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Coherent-mode representation of a statistically homogeneous and isotropic electromagnetic field
in spherical volume
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It is known that statistically stationary, homogeneous, and isotropic source distributions generate, in an
unbounded low-loss medium, an electromagnetic field whose electric cross-spectral density tensor is propor-
tional to the imaginary part of the infinite-space Green tensor. Using the recently established electromagnetic
theory of coherent modes, we construct, in a finite spherical volume, the coherent-mode representation of the
random electromagnetic field having this property. The analysis covers the fundamental case of blackbody
radiation but is valid more generally; since a thermal equilibrium condition is not invoked, the electromagnetic
field may have any spectral distribution. Within the scalar theory of coherent modes, which has been available
for more than two decades, the analogous formulation results in the first explicit three-dimensional coherent-
mode representation.
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I. INTRODUCTION waves|[14], which in the electromagnetic case further are

. — . . : completely unpolarizefi15].

In the investigations of partial optical coherence in ran- In the scalar case. the derivation of the coherent-mode
dom scalar wave fields in the space-frequency domain, the . S . .
theory of coherent modes plays a central role both from théepre_sentgtlon relle_s on making use of a known expansion of
practical and the fundamental point of viéw,2]. Although ~ n€ diverging spherical wave. On the other hand, the electro-
the theory is more than 20 years old, apart from a few exImagnetic analy5|s is based on expanding the mﬂmt_e-space
ceptiond 3,4], it has mainly been applied to two-dimensional Green tensor in terms of bo_th transverse and longitudinal
(or beamlike scalar fields. Furthermore, a rigorous formula- SPherical vector wave functions by means of the Ohm-
tion of the coherent-mode theory for general electromagnetifayleigh method. In both cases, the distribution and shapes
fields has not been available, until very recerfyg]. of the modes are demonstrated.

In this work, we apply the theory of coherent modes, both  The paper is arranged as follows. Section Il is a concise
in the scalar and electromagnetic formulation, to certain speeverview of the scalar theory of coherent modes. In Sec. IlI
cific three-dimensional, statistically stationary, homoge-the theory is applied to random scalar fields whose cross-
neous, and isotropic fields. More explicitly, we construct, inspectral density function is proportional to the imaginary part
a finite spherical volume, the coherent-mode representatioof the infinite-space Green function. Section IV introduces
for the scalar and vectorial light fields whose cross-spectrapriefly the electromagnetic theory of coherent modes, which
density at any frequency is proportional to the imaginary parthen in Sec. V is employed for vector fields having the elec-
of the infinite-space Green function or tensor. This form oftric cross-spectral density tensor proportional to the infinite-
the cross-spectral density is obtained for the fields generateghace Green tensor. For readability, the mathematical details
by statistically homogeneous and isotropic source distribuhave been collected, in a self-contained manner, into Appen-
tions within a low-loss medium; scalar and electromagneticiixes A-D.
treatments are found in Reff/—9] and Ref.[10], respec-
tively. For example, the electric cross-spectral density tensor
of blackbody radiation belongs to this class of cross-spectral|| coHERENT-MODE REPRESENTATION OF SCALAR
tensors[11-13. But in our analysis no thermal equilibrium FIELDS
needs to be assumed, and the field therefore may have an
arbitrary spectrum. From a physical point of view, the fields
that we consider correspond to a superposition of isotropi-
cally distributed and angularly uncorrelated random plan

We begin with a brief summary of the basic concepts
ertaining to the coherent-mode representation of fluctuating,
tatistically stationary scalar fields. At any frequengythe

coherence properties of the field at two points in spage,
andr,, are described by the cross-spectral density function,
*Email address: Tero.Setala@hut.fi; FAX358 9 451 3155. defined by the Fourier transform
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1~ ) The cross-spectral density function that we consider is
W(rl,rz,w)=; f L'(ry,ra explion)dr, (1) explicitly written as

2
where W(r 1,1 ,K) = (4malk) IM[G(rq,r,,K)], (7)

k

[ryrzm = U r,Hulrzt+m) @ where the coefficiena(k) can be interpreted as the spectral
is the mutual coherence function. The functid(r ,t) is the  density of the plane waves in the plane-wave representation
complex analytic signal associated with the random scale{r14]_ Further k= \;'ew/CO is the wave number of light is the
field, and the asterisk and angle brackets denote complexlative permittivity of the linear, homogeneous, and isotro-
conjugation and averaging, respectively. The functionpic medium, assumed to have vanishingly small absorption,
I'(rq,r,,7) characterizes the field correlations between theandc, is the speed of light in vacuum. Moreover,
two points at time difference. i

The scalar cross-spectral density functions are Hermitian Glrir oK) = exp(ik|ry — rol) )
and non-negative definite Hilbert-Schmidt kernels, and there- e 4arlry =1,

fore they admit the following Mercer series representation o . . .
(Ref. [1], Sec. 4.7.1 Is the infinite-space Green function, whose imaginary part

(whenk is rea) is a sinc function,

W(F 1,7 2,0) = 2 (@) (T 1, @) (T 2, @) ) - _
ne - 1 2 Im[G(rl,rg,k)]=Sm(k|r1 rol)

The quantitiesa,(w) and ,(r,w) are the eigenvalues and

eigenfunctions, respectively, of a homogeneous Fredholm inVe note that the functiorG(ry,r,,k) is here called the
tegral equation of the second kind, infinite-space Green function, but whers1 it is usually
referred to as the free-space Green function.

In the following, we construct the coherent-mode repre-
sentation for the cross-spectral density function given in Eq.
(7). AlthoughW(r4,r,,k) in Eq. (7) is for an infinite space,
where the integration is performed over the dom@inot  the expression that we derive is interpreted as the coherent-
necessarily finiteunder consideration. If we define the inner mode representation infanite spherical volumed, of radius
product of two functions(r) andb(r) overD to be d. By making use of Eqs(A5) and (A8), we can directly
write in the spherical polar coordinates

9

Amlry—ry

f W(rlirZIw)lpn(rl!w)dgrl: an(w)wn(rbw)v (4)
D

{a(r),b(r)}p Ef a’ (r)b(r)d’, (5) = n
7 W(r g, 1ok = (4m2a) X 2 ja(kr)ja(kry)
the set of eigenfunctions can be chosen to be orthonormal, n=0 m=-n
€ XY (61,00 Yn(02,02), T1,12€D,
{thm(r, @), (1, ©)}p = S, (6) (10

wheredn, is the Kronecker delta. The factoyg(r , ) satisfy  wherej,(kr) andY}(6, ) are spherical Bessel functions and
the Helmholtz equation, and thus each term in the summaspherical harmonics, respectively. Next we define the func-
tion in Eq. (3) likewise obeys a pair of Helmholtz equations. tions

Since the terms in the summation are of a spatially factored .

form, they represent elementary modes which are completely b1 K = jnkNY(6,¢), —n=m=n, (11

coherent, and therefore E(B) is called the coherent-mode \ich are known to be solutions of the Helmholtz equation
representation of the cross-spectral density fundtiof].
V21, K) + K2rnr(r,K) = 0, (12)

and are finite at the origifRef.[16], Sec. 9.6. With the help
of Eqg. (A6), the functionsg,(r ,k) are found to be orthogo-
nal inD, i.e.,

Consider next specifically the statistically homogeneous —
and isotropic scalar fields, whose cross-spectral density func- (Bl K)s b (1K) = oK) dmr O (13
tion is proportional to the imaginary part of the infinite-spacewhere
Green function7-9,14, i.e., to a sinc function. This func- g
tional form is found for the cross-spectral density of the C(K) EJ
wave field generated by any homogeneous and isotropic 0
source distribution within a medium of negligibly small (14)
losseq 7-9]. Physically such a field is known to correspond
to an isotropic distribution of angularly uncorrelated planeThe first expression in Eq14) and Eq.(A10) indicate that if
waves[14]. d— <, thenC,(k) — o, which is one of the reasons for con-

IIl. COHERENT-MODE REPRESENTATION OF A
HOMOGENEOUS AND ISOTROPIC SCALAR WAVE FIELD

d3
r3j2(kn)dr = E[jﬁ(kd) = n-2(kd)j e (kd)].
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sidering a finite volume. The latter expression in ELf) is 1%*_*
obtained from Eq(A11). For later purposes, we define the **;***
functions 0.8 R
*, *,
1 £ 06 ~ o
Y1, K) = —=—==]n(kNY7(6,9), (15 8 " ,
VC,(k) = 04 * *
which constitute an orthonormal set of functionsDni.e., x "
0.2 *

{lﬂmn(r,k), ‘//m’n’(rak)}D = 5mm’ 5nn’- (16) R

Note that the orthogonality is due solely to the orthogonality 002000 4000 6000 8000 16000

with respect to the angular coordinates. Furthermore, the n

shapes of the functiongy,(r, k) e_lre ?ndependent of the size FIG. 1. Behavior of the ratio of eigenvaluaﬁ)(k)/)\(ll)(k) as a
of the volume, only the normalization facto@(k) depend function of mode numben for spherical volumes of radiug

on it. ) =100Q\ (lower curve andd=1500\ (upper curve Dots are forj
In terms of the functiong/p{(r k), we can now express =1, corresponding to both the scalar and the first set of electromag-
the cross-spectral density function of EqO) in the form netic eigenvalues, whereas stars arejfe?, corresponding to the

second set of electromagnetic eigenvalues. In both curves, the dots

o n
_ (1) * and stars are plotted for modes with numben
WIrsrak) =2 2 AR gmdr 19200, (17 2500 600, 1000, .}.andn=(1,400,800,. ), respectively

n=0 m=-n

where

Y1) = (4m)?a)Cy(K). (18) f St K = dmalkVo, (21)
D

Using Eq.(16), one readily finds that the functiorh%l)(k) of

Eq. (18) and (1 ,k) of Eq. (15 are, respectively, the ei-

genvalues and the orthonormal eigenfunctions of the Secon%hereVD is the volume of the spher®. Exactly the same
kind Fredholm integral equation whose kernel is the Cr0SStagit is obtained by setting,=r, in Eq. (7) and then inte-
spectral density function given in Eq17). Consequently,

. 2 . : ; grating the ensuing expression over the volune
Eq. (17) is, within a spherical domain of radiug, the The distribution of the eigenvalues given by E@8) is

coherent-mode representation of the cross-spectral densifysyated in Fig. 1, where the dots show the behavior of the
function which is proportional to the imaginary part of the ratio A;l)(k)/)\(ll)(k) as a function of the mode number

infinite-space Green function. We remark that often only Onf{The stars in Fig. 1 are related to the electromagnetic analy-

index labels the modes, resulting in a single summation i s, and are explained later in Sec. V of the papehe lower
the coherent-mode representation. In this case, however, ﬂgﬁd upper dotpcurves correspona to spheprical volumes of
use of two indices is appropriate and, therefore, the mOdradiusd/)\:looo andd/x=1500, respectivelyh=2m/k is

representation consists of two summations. Furthermore, WE & wavelenath of the li ht Furthermore. for presentational
note that the eigenvalue labeled by indexs (2n+1)-fold gin ) g(l) ' P
reasons, the ratia,”(k)/\;"(k) has been computed only for

degenerate. The corresponding+2l eigenfunctions, i.e., " ~ . . .
those with the sama but differentm, are equally weighted the indices1={200,600,1000, .}. Itis obvious that the big-
er the volume, the more modes are needed to adequately

in the mode representation, and are orthonormal as evl ) -
denced by Eq(16). represent the cross-spectral density function. We denote by

Nmax the maximum value of index for which the modes
contribute significantly to the mode representation, and find
from Fig. 1 thatn,,,,=6300 for d/A=1000, whereas,ax
> =9450 ford/N=1500. For other values of radiu§ A, the
Sk =Wr,r k=2 2 AP®|gndr K2 (19 curves representing the eigenvalues were observed to be

The spectral density of the field at pointis obtained
directly as

n=0m=-n similar in shape to those plotted in Fig. 1, ang,, was
which, when integrated over the volunie yields the total  found to increase linearly with radiu/\. Since there are
energy of the field irD, 2n+1 eigenfunctions for each, the number of significant

eigenfunctions is proportional t@/\)?, i.e., to the surface
3 - ) area of the spherical volun®.
Srkd = 2 (2n+ DA (K). (20) The shapes of the eigenfunctiors,(r ,k) are illustrated
D n=0 i . . .

in Fig. 2, where the squared moduli are shown in polar plots
In obtaining this expression, we employed the facts that théor indicesmn={00,01,12. The graphs are for a spherical
eigenfunctions are normalized and that the eigenvalues ammlume of radiusd/A=1000, withkr=10. In the direction
(2n+1)-fold degenerate. Substituting the first expression ofspecified by the angle&, ¢), the value of the function is
Eqg. (14) into Eqg.(18) and then using EqA9), the summa- indicated by the distance from the origin, which is located in
tion in Eg. (20) can be carried out, resulting in the middle of the graph.
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ool

f l//n(rl! w) ) W(r 1 r21w)d3r1 = )\n(w) ';[In(rZa (1)) . (26)
D

The eigenvalues are real and non-negative, and the eigen-
functions form an orthonormal set in the sense that

FIG. 2. lllustration of functions|ym(r,k)|? for indices mn {1, w), (1, @) }p = Sy (27)

={00,01,12, when the radius of the spheredé\=1000 andkr . . .
=10. The value of the function is indicated by the distance from théo‘IthOngh the orthogonality does not automatically hold if an

origin, located in the center of each graph. The orientation of theeigenvalue is degenerate, the corresponding eigenfunctions

coordinate axes is shown in the inset. can always be made orthogonal.
It is straightforward to verify that the factous,(r , w) and

IV. COHERENT-MODE REPRESENTATION the tensors

OF ELECTROMAGNETIC FIELDS

Wo(r1,r2,0) = M@ diy(r, @) d(rp0)  (28)

The coherent-mode representation of electromagnetic . . .
fields is constructed in ful? analogy to that of the s<§:]alarObey the appropriate . equations and Maxwell di-
fields. We give here only a brief summary of the theory; for V€Tgence conditions. In addition, since the tensors
a complete treatment we refer to RES] (see also Refi6]).  Wa(r1,r2, @) are of a spatially factored form, they may be
The coherence properties of a stationary, random electromagnderstood as elementary cross-spectral density tensors rep-
netic field are, at any frequenay, described by the cross- resenting completely coherertand completely polarized
spectral density tensof4]. As is customary, we consider in [17]) electric fields in the space-frequency domgl@], in
the following only the electric component of the electromag-the sense of the definition of the spectral degree of coherence
netic field. The electric cross-spectral density tensor is defor electromagnetic fieldgb,18,19,

fined as -
||W(r 11r21 w)HF

(AW 3,7 1, @) 20T .1 5, 0) ]2

1 0 M(rlerIw) =
W(rlerIw) = 2_f F(rler! T)exqin)dTy (22)

L -y . .
In this equation

where ||V\H/(r 11r21w)||F = tr[VT/(r 1!r21w) ' \K/T(r 1.2 w)]l/Z

T(ry,rom) =(E"(r,OE( 5t + 1) (23 = 2 (Wi (r 1,F 5, 0)|? " (30)
ij

is the electric mutual coherence tensor. The funclén,t)  \ith the dagger standing for the Hermitian adjoint, denotes
is the complex analytic signal representing the electric fieldhe Frobenius norm. Thus, in analogy with the scalar theory,
vector. As seen from Eq(23), the tensorl'(r,,r,,7) de- Eq.(24) may be called the coherent-mode representation of
scribes the electric-field correlations between two space-timthe electric cross-spectral density tensor.

points.

It is rea_diliy shown that thg eIectri_q gross—spectral_density V. COHERENT-MODE REPRESENTATION
tensor satisfies some specific Hermiticity, non-negative defi- OF A HOMOGENEOUS AND ISOTROPIC
niteness, and square-integrability conditiphf These prop- ELECTROMAGNETIC WAVE FIELD
erties imply that it may be expanded as a Mercer series of the
form [5,6] Next we consider the specific electromagnetic fields

whose electric cross-spectral density tensor is proportional to
Y — * the imaginary part of the infinite-space Green tensor
W(r 4,1 ,0) = 2, N\ ry, ro,w), rq,r D, 24 . o
(ry,rz0) % (@ (r1, @) (r2,0), T4,z € 24) [10-13,15. A classic example of such a statistically homo-
geneous and isotropic random electromagnetic field is the

when the inner product for vector-valued complex functionsblackbody radiation for which the cross-spectral density ten-

in the volumeD (not necessarily finite, in genejas defined ~ SOrs already have been known for quite some fifie-13.
to be Recently, it was demonstrated that all statistically homoge-

neous and isotropic current source distributions within a low-
loss medium, not necessarily those in thermal equilibrium,
{A(r),B(r)}DEJ A"(r) -B(r)dr. (25)  generate a wave field whose coherence properties are de-

D scribed by the imaginary part of the infinite-space Green ten-

sor[10]. Analogously to the scalar case, such a field may be

In Eq. (24), the quantities\,(w) and ¢,(r,w) are the eigen- understood to consist of an isotropic distribution of angularly

values and vector-valued eigenfunctions, respectively, of thencorrelated plane waves which, in addition, are unpolarized
homogeneous Fredholm integral equation of the second kind15].
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A. Electric cross-spectral density tensor whereasL ,(r,k) is a longitudinal (or irrotationa) wave
The electric cross-spectral density tensor that we considdHnction. Furthermore, since the functiodg,(r k) satisfy
is written as[10-13,15 the scalar Helmholtz equation, E.2), the vectors in Egs.
) (34)—(36) are solutions of the vectorial Helmholtz equation,
< 4m)“a(k - i
w<r1,r2,k):% ImGrurk], Gy
L me(r,k) L mn(r,k)
\[/\g(t)? the infinite-space Green tensor given by the expression V2 M (1K) + K3 M (r,K) =0, (40)
Nimn(r,K) Nmr(r,K)
o - 1 ) . .
G(ry,rpk) = (U + @ VvV )G(fl,rz,k)- (32 We also mention the following symmetry relations:
- 1
The tensotU is the unit tensor an@(r 1,r,,k) is the scalar Mme(r,K) = K V X' Nm(r,K), (41)
Green function introduced in E@8). The imaginary part of
G(rq,r5,k), for realk, is readily obtained as 1
Nmn(r,k)=EV X M p(r,K). (42

< k j1(KR) | < A A
|m[G(r1,r2,k)]=_{{jo(kR)—M]U+jz(kR)RR}, _ .
4m kR For this work, we need to know the orthogonality rela-

(33)  tions of the vector wave functions. They are obtained by

R straightforward, although quite lengthy, calculations outlined
whereR=R/R with R=r;-r,, andR=|R|. Note that when in Appendix B. We have included the derivation of the or-

4a(k) is equal to Planck’s law, Ed31) is identical with the thogonality relations for completeness, since in our analysis

cross-spectral density tensor of blackbody radiation. we use a somewhat different form for the functiahs(r k)
_ _ than seems to be customary in the literati26,21]. Often
B. Spherical vector wave functions the angular part ofs,(r ,k) is written in terms of the asso-

As in the scalar case, we consider the field in a sphericatiated Legendre functions and trigonometric functions, in-
volume, which suggests us to introduce the spherical vectastead of the spherical harmonics that we emplsge Eq.
wave functiond20-24. They are constructed from the sca- (11)]. Use of trigonometric functions results in two sets of

lar functionseg,(r ,k) of Eq. (11) as follows: vector wave functions, one of which is even and the other
1 odd in the angular variable.
= In the sense of Eq25), the orthogonality relations in a
Lon(r, k) =—V r.k), 34 - - _
ol K) k Gl K) (39 finite spherical volume are of the forsee Appendix B
M mn(rvk) =V X [¢mn(r1k)r]! (35) {Lmn(r1k)vM m’n’(ryk)}D = 0, (43)
d.
N, K) = E V X V X [, K. (36) {Lmn(r,K), Ny (1, K)}p = (N + l)@ﬁ(kd)émm S »
Note that whem=0, so that necessarily alsn=0, the two (44)
latter functions are equal to zero, as can be seen from the :
explicit forms given in Eqs(B2) and(B3). However, unless {Mmn(r,K), N (1, K)}p = 0, (45)
otherwise stated, the equations that we encounter are for-
mally valid for n=0 as well. FunctionsM ,(r,k) and _ d,
Nn(r,k) obey the homogeneous vectorial wave equation, {L 7K, L (. K)o = | Di(k) = kZJ“(kd) O O
ie., (46)
M mi(r,K) S MK
Vv { Npn(r,K) B N1, K) =0. (7 M (1K), M s (1, K o = NN+ 1) C(K) Sy S s (47)

whereas the same is not true for functidng(r,k). From

the definitions, one can readily verify that {Nme(, k). Niwyr (1, K)kp = 11 + D)D1(K) I S (48)

whereC, (k) are the coefficients given in E¢L4), and

V Lo,k #0, (38)
Dk =t e K+ Cra0).  (49)
-{an(r’k)}:o (39) n )_2n+1 n-1 on+1 n+1 )
Nimn(r,K) '

We emphasize that the orthogonality properties in Egs.
Owing to these relations, functioMd ,,(r ,k) and N,(r,k) (43)—(48) again are due to the orthogonality with respect to
are called transversébr solenoidal vector wave functions, the angular coordinates only.
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In aninfinite space, the vector wave functions are not only §-function term on the right-hand side can be developed us-
orthogonal in indicesn andn, but also with respect to wave ing the vector wave functions whose completerj@8$ guar-
numberk, which constitutes a continuous set of variables.antees the existence of the following expansion:

The orthogonality relations are explicitly written in the form
(see Appendix B

Sry-rpU= f de>) 2 [Mpn(r1, AT 2 k)
0

{L il KM g (1K)} =0, (50) rm
+ Nmn(rvi)an(rZa K)]
oe) o n
{Lmn(r,K), Ny (1K)} = 0, (51) +f A2 2 Lindr1,0)Cmilr 2 5),
0 n=0 m=-n
, (57)
{an(rrk)va’n’(r!k)}30:01 (52)
where the integration variable is denoted kyin order to
(k- K') distinguish it from the fixed wave numbkr The first sum in

5 S Oy (53) the term involving the transversal wave functions starts with
k 1 sincen=0 corresponds to a zero term. Using the infinite-
space orthogonality relations, Ed50)—(55), we find that

{ mn(r k) I-m’n (r K’ )}oc—

7 ok=k') 2
{an(ryk)va’n’(ryk,)}sc_ ( +1)_—5m 5nn’= Z—K =
k m mn(r K) n(n+ 1) mn(rvK)! n= 11 (58)
(54)
(102 20 (59)
L Bnn(r, —Np(r,x), n=1, 59
{Nmn(ryk)va’n'(rvk,)}oc = n(n + l)gE(kak )5mm5nn’y ( * 1)
(55) 2K2
Con(r k) =—Lm(r,x), n=0 (60)

where we have used subscriptto emphasize that they are

for an infinite space. . . . . .
P leading to the following completeness relationship valid for

an infinite space:
C. Expansion of the infinite-space Green tensor in terms

of spherical vector wave functions <
P ory—ryu

In this subsection, the infinite-space Green tensor given in
Eq. (32 is expanded in terms of the spherical vector wave = Ef dKKZE E
functions by means of the Ohm-Rayleigh methf®D]. ™ n=1 m=—n n(n +1)
Analogous expansions, in terms of appropriate vector wave

[M (T 2, M e 2, 6)

functions, are explicitly known for the Green tensors in vari- * Nmn(rl'K)Nm”(rZ'K)]

ous geometries, including infinite space. However, we have % =

included the derivation here since the longitudinal vector +—f drx?>, E L (M1, &)L r(F 2, ).« (61)
0 n=0 m=-n

wave functionsL ,(r,k) are often neglectef20], and be-
cause we use spherical harmonics in #hg(r k) functions For the Green tensor, we consider the following trial ex-
leading to orthogonality relations for the vector wave func-pansion:
tions that are slightly different from those presented in some
publications[20-22.

The infinite-space Green tensor obeys the following two G(ry,r2,K)
wave equation$20]:

2
= —f dKKZE E ——[ami(x, k)an(rl’ K)

T nlannn(n 1)

XM m(r 2, 6) + an(KYk)Nmn(r]J K)Nm(r 2,4)]

i=(1,2), (56)

2 f ” S .
+—= | dkx? K, KL (11, )L (P2, ).
where V; operates on the spatial coordinateandk is as- mJo n%:()m;_n YR el 3,40 o 2110
sumed to have a vanishingly small imaginary part. The Dirac (62)
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Inserting this expression and E¢61) into Eq. (56), then 1
using Eq.(37), and noting thatV X L ,,(r,x)=0 [from the Ymn(#,K) = “e (64)
definition (34)], one obtains
(K, K) = Bl 1, K) = 2—K2 ©3 " and therefore
|
- 2 dKK
G(rl,rz,k) = E E [M mn(rl;K)M mn(r21 K) + Nmn(rl! K)Nmn(rZ’K)]
™Jo n=1 m=-n n(n+ 1)
2 (“dkiPan -
-—f @ 2> 2 Lidruolmdrzn). (65)
m™Jo n=0 m=-n

The « integrations can be carried out analytically as demonstrated in Appendix C. Furthermore, at this stage, we perform the
summations in the longitudinal part. These operatime® Eqs(C1), (C2), (A5), and(C5)] result in the expression

Mo (1, kM D (r, k) + N:nn(rl,k)N(l)(rz,k) r,<r,
(n +1)

Sirurk=kE 3 L M@ 1M 120K + N1 N1 260, T2 > 1

nlm—n
1 o
>

AmeS n(n+1)

n

re 1
(Vi XV X)(V XV, X) [+l Pn(cosy)ror, | = A k2V1V2| r

>

1

13|

: (66)

wherer_=min{|r4|,|r,[}, r~==max]r4|,|r,[}, v is the angle ~ >
betweenr; andr,, and W(r,rp,k) = (Am2ak >, >

n=1 m=-n n(n + 1)
MB(r k) =V x [hP(kr)YT(6,0)r], (67)

XM o1 1, KIM (1 2,K) + Ny, K)
M2r k) =V x [hP (kY™ (6,0)r], (69) XNpr(r2,K)]. (71)
This formula is readily rewritten as

1
NO(r k) ==V x V x [hP(knYT(6,0)r], (69
K v WAr 1,7 2,K) = 2 Z AD K g (11, K (1 2,K)

n=1m=-n

1 %
N K==V x V X [hDkDY™(8,0)r]. (70 " .
Tk ne 2 2 N (rL k),
=1 m=—
Note that the vector functions with superscrigi) differ A

from the wave functions defined in E485) and(36) in that (72)
they involve spherical Hankel functions instead of sphericalyhere

Bessel functions. The functions with supersc(i®t in addi- n )

tion to containing spherical Hankel functions, involve A (K) = (4m)“a(k)Cy(k), (73
complex-conjugate spherical harmonics.

1 _
D. Coherent-mode representation of the cross-spectral density ¢§11?1(r1k) - WM mn(1.K), (74)
tensor in Eq. (31) "

. " . . ... and

We are now in a position of constructing, in a finite
spherical volumeD, the coherent-mode representation of the )\ﬁf)(k) = (4m)2a(k)D,(K), (75)
cross-spectral density tensor that is proportional to the
infinite-space Green tensor. We note that the last two terms in @
Eq. (66) are real, except for the prefactork?/ which nev- Prnl1 K = m N, K). (76)
ertheless can be treated as a real number when the losses are "
vanishingly small. Inserting Eq66) into Eq.(31) and taking In these expressions, the paramet€gk) and D,(k) are
the imaginary part of the remaining terms as outlined in Ap-those defined |n Eqg14) and (49), respectively. Note that
pendix D, we arrive at the expression the quantltles}\ (k) are the eigenvalues encountered already
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in the scalar case, cf. Eq18). It follows directly from
Egs. (47) and (48) that, in a finite spherical volum®,
{z,[zg)n(r,k),z/;g),n,(r,k)}DzémmcSnn,, for j=(1,2). Further-
more, Eq.(45) implies that{z/zﬁ(r,k),z/;(z) (r,k)}p=0 for

m’'n’
all values of the indices. It is now an easy task to verify that

AV(k) and ¢ (r k), with j=(1,2), are the[(2n+1)-fold de-
generatg¢eigenvalues and orthonormal eigenfunctions of the
vectorial Fredholm integral equation given in E86), with

the cross-spectral density tensor of E@l) as the kernel.

Therefore, Eq(72) is, within a finite spherical volume, the 2 S22,

coherent-mode representation of the cross-spectral densit *{?}\}\})\E‘M%ﬁ

tensor in Eq.(32). \\\\\llﬂlllll//
Consider next the total energy of the field in the spherical W74

volumeD. The energy density at a pointis given by

S(r,k) = tr[W(r,r,k)] ‘,///}"unmw'\\\\\
- iy
=2 2 NP0 (1,0 - gi(r k)
n=1m=-n FIG. 3. lllustration of functionﬁzpﬁ(r,kﬂ2 (upper row and
+ N2 2 (r k) - P2(r K07, (77) 2 (r K2 (lower row) for indicesmn={13,14, whenkr=1 and

kr=10. The radius of the sphere is choserdAs=1000. The value
which, when integrated over the volunig yields the total  of the function is indicated by the distance from the origin, which is
energy inD as located in the middle of each graph. The orientation of the coordi-
» nate axes is shown in the inset.
J Srokdr =2 2n+ DINPk) + 2 (K] (78)
D n=1 although they are strictly different, as can be seen from Egs.
(49), (14), and(A12).
The shapes of the eigenfunctioﬂ#;(r ,k) and ¢E§:](r ,K)
are demonstrated in Fig. 3 by showing in polar diagrams the
behavior of their squared moduli for indicesn={13,14,
3. _ when kr=1 andkr=10. The upper and lower rows corre-
fD Srkd'r = 8malk)Vp. 79 spond to functions//fi;(r .k) and ://f]:](r ,K), respectively, and
) . ) ) . the graphs are for a spherical volume of radiés =1000. In
Exactly_ the same re_s_ult is obtained by first taking the limityhe “girection specified by the anglés,¢), the modulus
r1—rin Eq. (31), giving squared of the function is indicated by the distance from the
8ma(k) - origin, which is located in the center of each graph. We see
U, (80) from Fig. 3 that, wherkr=1, the absolute values of functions
~ {(r,k) and (r k) are markedly different, but fokr
and then integrating the trace ¥f(r ,r k) over the volume =10 they are quite similar. In fact, for anmn the squared
D. moduli |¢f§;(r ,k)|? and |¢E§2}(r ,K)|> have asymptotically as
Figure 1 illustrates the distribution of the eigenvalueskr— < the same angular dependence.
given in Egs.(73) and(75), by showing the behavior of the _
ratios k;l)(k)/)\(ll)(k) (dots and )\512)(k)/)\(11)(k) (star$ as a E. Degree of coherence of_ the field represented by the cross-
function of the mode number. The lower curve corresponds spectral density tensor in Eq. (31)
to a spherical volume of radiud/ \ =1000, whereas the up- It is of interest to calculate the electromagnetic degree of
per curve is ford/\=1500. The eigenvalues are plotted only coherence as given by E®9) for the field characterized by
for certain modes; the dots and stars are far the electric cross-spectral density tensor in €4). A direct
={200,600,1000, . }.andn={1,400,800, ..}, respectively. substitution leads to
As discussed earlier in connection with scalar fields, Fig. 1 1 1 12
evidences the fact that the bigger the volume, the more ,u(rl,rz,k)=——[j(z)(kRH—ig(kR)} , (81
modes, in the electromagnetic case ba#f’(r k) and V3 2

Yio(r.K) type, are required to represent the cross-spectrahere R=|r,—r,|. We point out that earlier a definition for
density tensor with a sufficient accuracy. We also observenhe electromagnetidegree of coherence based on the visibil-
that, to a good approximation, the number of significantity of intensity fringes in Young’s double-slit interference
modes, Ny, is the same for both types of modes. Further-experiment has appeared in the literati#8], evaluated also
more, the ratios\'"(k)/\{"(k) and X2 (k)/\{"(k) are also  for blackbody fieldd11,15. This definition results in a sinc
approximately equal and lie on the same curve for a foked function for the degree of coherence, i.e.,

Inserting Egs(73) and (75), the first form of Eq.(14), and
Eqg. (49 into the above formula, rearranging the resulting
expression, and then using E&9), we end up with

W(r,r,k) =

036618-8
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) degrees of coherence by computing them for the type of
i homogeneous and isotropic random fields considered in this
081 work, e.g., blackbody radiation. We found that both quanti-
\ ties lead to the conclusion that, for every spectral component,
— 0.6 . the correlation length in blackbody radiation is on the order
= [T of the wavelength. However, only the correlation-based defi-
< o4}t \ nition of the electromagnetic degree of coherence implies
ul that the elementary modes, i.e., fields for which the cross-
0.2t \ spectral density tensor is of a spatially factored form, are
MO\ A e fully coherent(and fully polarizedl. It is our hope that the
0 : VAVaAV W W work presented in this paper inspires further research on the
0 1 2o ° 4 5 electromagnetic theory of optical coherence, which so far has

attracted considerably less attention than the customary sca-
lar coherence theory, but which is of increasing importance
in near-field optics, fiber optics, and in the studies dealing
with light-matter interactions, for instance.

FIG. 4. Behavior of the quantitiega(r,,r»,k) [Eq. (81), solid

line] and |uyis(r1,r2,K)| [Eq. (82), dashed ling as a function of
R/\.
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strating a generally accepted result that the coherence lengsity of Technology, and A.T.F. the Swedish Research Coun-
of blackbody radiation is on the order of the wavelength forcil. J.T. is also supported by the Alexander von Humboldt
each spectral component. However, the degree of coheren€gundation.

in Eq. (81) qualitatively implies this result as well, as is

evidenced by Fig. 4, in which the quantitigsr,r,,k) and APPENDIX A: USEFUL FORMULAS

|1is(r1,72,K)| are plotted as a function &/\. From Fig. 4, Orthogonality relation for exponential function€Eq.

or from Eq. (81), we also see that when;—r,, then 12.141 in Ref[33]),

u(rq,r,,K)—1/y3. This is due to the fact that blackbody o
radiation is a fully unpolarized field for which no definite f
phase relations exist between the three electric-field compo-

nents at a single poirtor between two poinjs Therefore, for . . . .
this field, the degree of coherence assumes a value less thQH‘ferenual equation obeyed by associated Legendre func-

Mis(r 1,7 2,K) = jo(KR) = Financial support from various sources is gratefully ac-

exdi(m-m")elde = 275y - (A1)
0

unity whenr;—r, [19,31]. tions (Eq. 12.71 in Ref[33]),
1 d dP(cosé me
——| sin dPncos6) +|nn+1) - — PI'(cos#)
VI. SUMMARY AND CONCLUSIONS sin@de de Sir? 0
We constructed, in a finite spherical volume, the coherent- =0. (A2)

mode representation of specific statistically homogeneoantegral involving associated Legendre functidfexercise
and isotropic scalar fields whose cross-spectral density funci-2 5.8a) in Ref. [33]]

tion is proportional to the imaginary part of the infinite-space™ ™" ' '

Green function. To our knowledge, this is the first three- 7T|:apnm(cosg) IP"(cos6)

dimensional scalar coherent-mode representation ever de- f

rived. Furthermore, we applied the recently formulated rig- 99 99
orous theory of electromagnetic coherent modes, and 5
developed, in full analogy to the scalar case, the coherent- + .m
mode representation for the field whose cross-spectral den- Sir? 6
sity tensor is proportional to the infinite-space Green tensor. 2n(n+ 1) (n+m)!

The results cover the fundamental case of blackbody radia- = Snny - (A3)
tion, but are valid more generally. We also studied the energy 2n+1 (n-m!

distribution among the modes and illustrated, using polaExplicit formula for spherical harmonic'™(6,¢) (Eq.

graphs, the geometrical character of some of the lower-ordef? 146 in Ref[33]),
modes.

We point out that two different definitions of the electro- m o am. [2nt1ln-mt .
magnetic degree of coherence have appeared in the Iiterature,Yn (6.0)=(=1) 47 (n+m)! Pn(coso)explime).
one based on the average correlation between the electric- (Ad)
field component$5,18,19,30 and the other on the visibility

of intensity fringes in Young's interference experiment Addition theorem for spherical harmoni¢&€q. 12.197 in
[27-29 (see also Refs[31,32). We compared these two Ref.[33)),

0

Pr(cos6)Py(cos 0)] sin #de
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Po(cosy) =5 S V™ (B eV (G e). (AB)

2n + m=-n

where (6, ¢;), with i=(1,2), are the angular coordinates of

the position vectors;, andy is the angle between, andr .

Normalization and orthogonality relation for spherical

harmonics(Eq. 12.147 in Ref[33]),

2@ m
f J Ynm*(01 QD)Y:]V (9, (P)Sin 6d0d§0 = 5mm 5nnr .
0 0

(A6)

Expansion of 1}f,—r,| in spherical polar coordinate&q.
3.70 in Ref.[16)),

EZ

n=0 m=-n

n

(01, 1) Y62, 05),

|r1—r2| 2n+1rn+l i

(A7)
wherer _=min{|r4|,|r,|} andr-=max]r4|,|r,|}.

Addition theorem for spherical Bessel function&) (Eq.
10.1.45 in Ref[34]),

. k — *
S 12D - 5% (o 1) (k)oK Po(cosy),
k|l’ 1~ r2| n=0

(A8)

wherek is an arbitrary complex number,=|r;| for i=1,2,
and y=<(rq,r,).

Summation of a series involving(r) (Eq. 10.1.50 in Ref.

[34)),

> (2n+ D)j3(kr) =

n=0

(A9)

for all k.
Two integrals involving spherical Bessel functiofisqg.
3-26 in Ref.[20], Eq. 68 in Appendix D of Ref35]),

" sy mak=K)
forJn(kr)Jn(k r)dr =T (A10)
r r3
f 2Rk )’ = LK = jo-a(KDjnea(kn)].
0
(Al11)

Two recurrence relations for spherical Bessel functidus.
10.1.19 and 10.1.20 in Ref34]),

]n( )

Jrea(n) + jpea(n) =(2n+ )= (A12)

ﬁJn(r).

Njp-1(r) = (N+ Djrea(r) =(2n+ 1) (A13)

Asymptotic formulas for spherical Bessel functiofisgs.
11.156 and 11.158 in Ref33]),

PHYSICAL REVIEW E 71, 036618(2005

el

. 2!
Jn(r) ~ ———r"

@n+1)! (AL4)

whenr — 0,

jn(r) ~ = sm(r - %) whenr — o, (A15)

Small-argument expansion for spherical Neumann function
(Egs. 11.157 in Ref.33)),

(2n)!

(1) ~ = T

whenr — 0. (A16)

Integral involving spherical Bessel functiofisgs. 4—14 and
4-16 Ref[20]),
imF(K) .

* Pk (12
[ FT) g R e,

(A17)

where r_=min{|r|,|r,|} and r-=max]|r,|,|r,|}. Further-
more,hgl)(r):jn(r)+inn(r), wheren,(r) is the spherical Neu-
mann function, is the spherical Hankel function of the first
kind. The above equation holds assuming tRék) is an
even function ofx, F(«)/« is an analytic function in the
plane, and thak has a positive imaginary part.

Special case of the above integral for spherical Bessel
functions, withF(x)=1,

“in(kr)jn(kry) i
fo - K21_nk2 2 dK:E(Jn(kr<)h§11)(kr>)
T rt

220+ DKL

(A18)

This result is obtained analogously to E&17), but noting
in the derivation that when,(«r,) is expressed in terms of
the first- and second-order spherical Hankel functions, a
first-order pole ak=0 is present, and needs to be taken into
account.

OperatorsV andV X A in spherical polar coordinates,

0 d ¢ J

N
V=f—+—+— , (A19)
o rde rsinédp
vxaz—t [%smw_@]f{__l A,
rsiné a0 g rsiné do
1o(rA,) |~ 1| d(rA A
<_a]9[<_> } (A20)
r or r or a0

where (F,b,&:) are the unit vectors along the axes of the
coordinate system.

APPENDIX B: ORTHOGONALITY OF SPHERICAL
VECTOR WAVE FUNCTIONS

The orthogonality relations are computed by substituting
into Eq. (25) the explicit forms of the vector wave functions,
which with the help of Eqs(A19) and(A20) are found to be
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1 <9l n(kr)

L1, =4 = YR (6,90 + J"ﬁtr){wb

a0

im . R
+ si_naY“(a’ @)@}, (B1)

. e
'V'mn(f,k)=jn(kr){$vﬂ’(e,¢)a—%e‘f’)@]

(B2)

n(n+1)
kr
y { NP(6,¢)~ im

0+ YM(0,0)5 | . B3
Py sing n ( ¢)¢] (B3)

. N
Nin(r,K) = In(KNYR(6, )T + o ar[rJ n(kn]

In obtaining the last equation, EGA2) is particularly useful.
Note thatM gg(r ,K)=Ng(r , k) = 0[smceP(cos€) 1].

The following integral appears often in deriving the or-

thogonality relations, and is given here for convenience:

2n [ N (6,¢)
fJ sm&” (6¢) 6

N m’ Ynm*(ﬁ, ®)

m’ . _
sng_ 99 Yn,(0,<p)]sm0d0dcp—0, (B4)

which holds for allm,m’,n,n’. This formula is obtained by
substituting from Eq(A4) for spherical harmonics, carrying
out the resultingp integration using Eq(Al), and then not-
ing that for associated Legendre functid®8(+1)=0 for m
#0 (Eq. 12.91 in Ref[33]). Equation(B4) can be verified
also for indexm=0. Another integral involving angular co-
ordinates that is frequently encountered is of the form

JZW f [ N (0,0) Y (6,6)
o Jo 90 90

n2 P (0 (P)Yn, (6, qo):|S|n odede

= n(n + 1) 5nnl 5mnfi (BS)

which is obtained straightforwardly by using Eq&4),
(A1), and(A3).

We need also the following two relations involving
spherical Bessel functions. First,

N+ Djn(k0jo(K'T) + 1] (k) oK)

12

= o gl Dinea k0 k0) + kD) (K D)1,

(B6)

which is directly verified by using Eq$A12) and(A13) on
the left-hand side. Second,

PHYSICAL REVIEW E 71, 036618(2005

29in(kr) djn(k'r) 9 P
r or ar - 0.)',[” n(kr)] ar [I’j n(k I’)]

a.
= o iakDia(K'Dl, (B7)

which, in turn, is verified on performing the derivatives on
the right-hand side. Note that in the above equations, the
argument of Bessel functions kg rather thanr, which is
present in the recurrence relations.

Orthogonality relations in Egs. (43), (45), (50), and (52)

The orthogonality relations in Eq$43), (45), (50), and
(52 are readily obtained by using EqB1)—(B3) in Eq.
(25), and noting that in all cases we end up with the angular
integration of Eq.(B4).

Orthogonality relations in Egs. (44) and (51)

Use of Egs.(B1) and(B3) in Eq. (25) straightforwardly
leads to

{Lmn(rak)me’n’(ryk,)}D

nn+1) 4
Kk’ r n(kr)]n(k’r)5mm(5nn’- (BS)
0

The angular integrations encountered in deriving this result
are exactly those of Eq9A6) and (B5). Employing the
asymptotic forms of spherical Bessel functions, Edsl4)

and (A15), we obtain the orthogonality relations given in
Egs.(44) and(51).

Orthogonality relations in Egs. (46) and (53)

Substituting Eq(B1) into Eq. (25), performing the angu-
lar integrations with the help of Eq§A6) and(B5), we find
that

{Lmn(r:k)rl—m/n'(r 1k,)}D

1 (] Ldin(kn) djn(K'T) A
—kk,fo [r o o +n(n+ 1)jnkn)jnk'r)

XA Sy Sy - (B9)

Next we note that using Eq$B6) and (B7), this equation
can be arranged as

{Lmn(r:k)nl—m/n'(r k,)}
n+1

= on + 1J r Jn l(kr)ln 1(k,r)dr5mm’5nn’

+ 2n+ 1f r Jn+l(kr)]n+1(k r)drﬁmm 5nn/

d
KK [
This form, with the help of Eqg14), (49), (A10), (A14), and

rj n(kr)jn(k,r)émm(énn’- (BlO)
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(A15), implies the orthogonality relations in Eggl6) and {Np(r,K), Ny (1, K)o

(53). d
n(n+1) S
=T n(n+ 1)j(kn)ja(K'r)
Orthogonality relations in Egs. (47) and (54) 0

. . Jd J
The orthogonality relations, Eq$47) and (54), for the + —[rjo(kn]=[rj n(k'r)]}drémnnﬁm,. (B12)
functionsM ,,(r ,k) defined by Eq(B2), are obtained from or or

M (£, M (1K) Employing Eq.(B2), this formula takes on the form

d {Nmn(r!k)le’n’(rrk,)}D
=n(n+ 1)[ r2j (KD jn(K'1)Ar Sy Sy - (B11) n(n+ 1)2
0

d
= 2n+ 1 fo rzjn—l(kr)jn—l(k,r)dramm'8nn/

The angular integration encountered in the derivation of this

formula is the one given in EqB5). Making use of Egs. + n’(n+1) drz- (KE)j oy (K1) 8
(14) and(A10) at once results in Eq$47) and (54). n+1 J, Ine2{KD]nea mm “nn’ -
(B13)
Orthogonality relations in Eqs. (48) and (55) We see that use of Eg§l4), (49), and (A10) in the above
Inserting Eq.(B3) into Eqg. (25), performing the angular formula leads to the orthogonality relations given in Egs.
integrations using EqgA6) and (B6), we find that (48) and (55).
|
APPENDIX C: SIMPLIFICATION OF EQ. (65)
K integration for the M ,,,(r, x)-function part
First making use of Eqg¢35) and(11), and then Eq(A17), one obtains
2 dxk? -
wf K2 _kzglmgn (n+ 1) mn(ran)an(rZK)
A (KT Dn(KT2) (e
= 7_1_”21 gn n(n+ 1) (V1 X)(Vy X )J 5 2 kzn (YR (61,001 11[Yn'(62, @)1 5]
.kE 2 : {Vl X [in(Kr) YR (61, @01 11V X [N (Kr) Va0, @21 2], T1<T2 (CY
et meen NN+ 1) |V X [P (Kr) YT (61, 001 11V5 X [j(Kro) YT (02, 00)F 5], 11> T,
whereV, X, with i=(1,2), operates on the vectoy.
K integration for the N ,,(r, x)-function part
Employing Eqs.(36) and(11), and then Eq(A18), after straightforward computations one finds that
2 (7 dii? o <
I, K)Nmn(ro,
Wj K_kzg_mgnn(n"'l) mn(lk) mn(ZK)
0 n
2 “drjo(kr)in(xry)
== > (V1 XV X)(Vy XV, X )f %[Ynm (01,01 1[YR'(62, ) 5]
7Tn1m—_ I’l( +1) 0 _k
- —2 E 1 {Vl X V1 X [jn(Kr) YA (61,001 1192 X Vo X [WP(kr) Y02 2)1 2], 11 <1,
Ko meen NN+ 1) | V1 X Yy X [ (kr) YA (63, @1)F 11V, X Vo X [[o(Kr2) ™65, 020 2], 1>,
1 ri m* m
nEl mZ_n n(n 1 (VX Vax)(V2 X V2 X) X {(2n+ D@l (Cue)rallYa(6a eral 1 (€2

whereV;X, with i=(1,2), operates on the vectoy, andr_=min{|r4|,|r,|} andr-=max]r4|,|r,|}. We point out that in Ref.
[20] (p. 173 the pole atk=0 is not taken into account and, consequently, the last term of@®&}.is missing in that work
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(noted also on p. 190 in Ref21]).

K integration and summations for the L,,,(r, x)-function part

Making use of Eq(34), we obtain

2 ([ Akl - s
_f E E Lmn(rvi)Lmn(rZIK)y
0

2
w k n=0 m=-n

= 1V22 2

n=0 m=-n 0
X[Ynm*(ela(»pl)Ynm(GZv(PZ)]- (C3)

The « integration can be performed as follows:

dKj n(Krl)j n(KrZ)

f drcjn(KT1)jn(T)
0

=lim
5—0

Jm szn(Krl)jn(Krz)dK
0 k2= (i6)? ’

. mo. . .
== lim —jior HhP(iar.),
5—0 2

T rn
== C4

2 (2n+ Drtt €49
where the second expression follows from E@§17),
whereas the third is obtained from Ed#&14) and (A16).
Employing Eqs(C4) and (A7) results in the expression

d
f i E E Lmn(rlaK)Lmn(rZ:K)
mJo

2
k n=0 m=-n

1 1
T an k2V1V2

- (c5)

ri=r

for the longitudinal part of the infinite-space Green tensor.
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APPENDIX D: IMAGINARY PART OF INFINITE-SPACE
GREEN TENSOR

Computation of the imaginary part of the tensor in Eq.
(66) is demonstrated here only for the sum containing
mn(r,K)MfTﬂ(r,K) terms. A straightforward calculation

leads to

|kn21m§ n(n m My (r, oM (r2,k)]
]
=Re kgln(ml)(le)(vzx)

n

X 2 Y™ (61, ) YN0 @) [n(krpr [P (krpr o] ¢

m=-n

EE

n=1m=- nn(n+1) (Dl)

M (T 1, KM e 2,K).

Here the second expression results from Eg85) and (67).
The third expression is obtained by noting that according to
Eqg. (A5), the sum involving spherical harmonics is purely
real, and recalling that R (kr)]=j(kr)~Rej,(kr]
whenk has a vanishingly small imaginary part.

The sums involving other terms are treated in full anal-
ogy. It is readily verified that the computation of the imagi-
nary part of Eq.(66) is formally the same as replacing the
functlonsM )(r k) andM(2 (r,K) with M,(r,k), and the
functlonsN (r,k) andN 2)(r k) with N1 ,K).
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