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It is known that statistically stationary, homogeneous, and isotropic source distributions generate, in an
unbounded low-loss medium, an electromagnetic field whose electric cross-spectral density tensor is propor-
tional to the imaginary part of the infinite-space Green tensor. Using the recently established electromagnetic
theory of coherent modes, we construct, in a finite spherical volume, the coherent-mode representation of the
random electromagnetic field having this property. The analysis covers the fundamental case of blackbody
radiation but is valid more generally; since a thermal equilibrium condition is not invoked, the electromagnetic
field may have any spectral distribution. Within the scalar theory of coherent modes, which has been available
for more than two decades, the analogous formulation results in the first explicit three-dimensional coherent-
mode representation.
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I. INTRODUCTION

In the investigations of partial optical coherence in ran-
dom scalar wave fields in the space-frequency domain, the
theory of coherent modes plays a central role both from the
practical and the fundamental point of viewf1,2g. Although
the theory is more than 20 years old, apart from a few ex-
ceptionsf3,4g, it has mainly been applied to two-dimensional
sor beamliked scalar fields. Furthermore, a rigorous formula-
tion of the coherent-mode theory for general electromagnetic
fields has not been available, until very recentlyf5,6g.

In this work, we apply the theory of coherent modes, both
in the scalar and electromagnetic formulation, to certain spe-
cific three-dimensional, statistically stationary, homoge-
neous, and isotropic fields. More explicitly, we construct, in
a finite spherical volume, the coherent-mode representation
for the scalar and vectorial light fields whose cross-spectral
density at any frequency is proportional to the imaginary part
of the infinite-space Green function or tensor. This form of
the cross-spectral density is obtained for the fields generated
by statistically homogeneous and isotropic source distribu-
tions within a low-loss medium; scalar and electromagnetic
treatments are found in Refs.f7–9g and Ref.f10g, respec-
tively. For example, the electric cross-spectral density tensor
of blackbody radiation belongs to this class of cross-spectral
tensorsf11–13g. But in our analysis no thermal equilibrium
needs to be assumed, and the field therefore may have an
arbitrary spectrum. From a physical point of view, the fields
that we consider correspond to a superposition of isotropi-
cally distributed and angularly uncorrelated random plane

waves f14g, which in the electromagnetic case further are
completely unpolarizedf15g.

In the scalar case, the derivation of the coherent-mode
representation relies on making use of a known expansion of
the diverging spherical wave. On the other hand, the electro-
magnetic analysis is based on expanding the infinite-space
Green tensor in terms of both transverse and longitudinal
spherical vector wave functions by means of the Ohm-
Rayleigh method. In both cases, the distribution and shapes
of the modes are demonstrated.

The paper is arranged as follows. Section II is a concise
overview of the scalar theory of coherent modes. In Sec. III
the theory is applied to random scalar fields whose cross-
spectral density function is proportional to the imaginary part
of the infinite-space Green function. Section IV introduces
briefly the electromagnetic theory of coherent modes, which
then in Sec. V is employed for vector fields having the elec-
tric cross-spectral density tensor proportional to the infinite-
space Green tensor. For readability, the mathematical details
have been collected, in a self-contained manner, into Appen-
dixes A–D.

II. COHERENT-MODE REPRESENTATION OF SCALAR
FIELDS

We begin with a brief summary of the basic concepts
pertaining to the coherent-mode representation of fluctuating,
statistically stationary scalar fields. At any frequencyv, the
coherence properties of the field at two points in space,r 1
and r 2, are described by the cross-spectral density function,
defined by the Fourier transform*Email address: Tero.Setala@hut.fi; FAX:1358 9 451 3155.
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Wsr 1,r 2,vd =
1

2p
E

−`

`

Gsr 1,r 2,tdexpsivtddt, s1d

where

Gsr 1,r 2,td = kU*sr 1,tdUsr 2,t + tdl s2d

is the mutual coherence function. The functionUsr ,td is the
complex analytic signal associated with the random scalar
field, and the asterisk and angle brackets denote complex
conjugation and averaging, respectively. The function
Gsr 1,r 2,td characterizes the field correlations between the
two points at time differencet.

The scalar cross-spectral density functions are Hermitian
and non-negative definite Hilbert-Schmidt kernels, and there-
fore they admit the following Mercer series representation
sRef. f1g, Sec. 4.7.1d:

Wsr 1,r 2,vd = o
n

ansvdcn
*sr 1,vdcnsr 2,vd. s3d

The quantitiesansvd and cnsr ,vd are the eigenvalues and
eigenfunctions, respectively, of a homogeneous Fredholm in-
tegral equation of the second kind,

E
D

Wsr 1,r 2,vdcnsr 1,vdd3r1 = ansvdcnsr 2,vd, s4d

where the integration is performed over the domainD snot
necessarily finited under consideration. If we define the inner
product of two functionsasr d andbsr d over D to be

hasr d,bsr djD ; E
D

a*sr dbsr dd3r , s5d

the set of eigenfunctions can be chosen to be orthonormal,
i.e.,

hcmsr ,vd,cnsr ,vdjD = dmn, s6d

wheredmn is the Kronecker delta. The factorscnsr ,vd satisfy
the Helmholtz equation, and thus each term in the summa-
tion in Eq.s3d likewise obeys a pair of Helmholtz equations.
Since the terms in the summation are of a spatially factored
form, they represent elementary modes which are completely
coherent, and therefore Eq.s3d is called the coherent-mode
representation of the cross-spectral density functionf1,2g.

III. COHERENT-MODE REPRESENTATION OF A
HOMOGENEOUS AND ISOTROPIC SCALAR WAVE FIELD

Consider next specifically the statistically homogeneous
and isotropic scalar fields, whose cross-spectral density func-
tion is proportional to the imaginary part of the infinite-space
Green functionf7–9,14g, i.e., to a sinc function. This func-
tional form is found for the cross-spectral density of the
wave field generated by any homogeneous and isotropic
source distribution within a medium of negligibly small
lossesf7–9g. Physically such a field is known to correspond
to an isotropic distribution of angularly uncorrelated plane
wavesf14g.

The cross-spectral density function that we consider is
explicitly written as

Wsr 1,r 2,kd =
s4pd2askd

k
ImfGsr 1,r 2,kdg, s7d

where the coefficientaskd can be interpreted as the spectral
density of the plane waves in the plane-wave representation
f14g. Further,k=Îev /c0 is the wave number of light,e is the
relative permittivity of the linear, homogeneous, and isotro-
pic medium, assumed to have vanishingly small absorption,
andc0 is the speed of light in vacuum. Moreover,

Gsr 1,r 2,kd =
expsikur 1 − r 2ud

4pur 1 − r 2u
s8d

is the infinite-space Green function, whose imaginary part
swhenk is reald is a sinc function,

ImfGsr 1,r 2,kdg =
sinskur 1 − r 2ud

4pur 1 − r 2u
. s9d

We note that the functionGsr 1,r 2,kd is here called the
infinite-space Green function, but whene=1 it is usually
referred to as the free-space Green function.

In the following, we construct the coherent-mode repre-
sentation for the cross-spectral density function given in Eq.
s7d. Although Wsr 1,r 2,kd in Eq. s7d is for an infinite space,
the expression that we derive is interpreted as the coherent-
mode representation in afinite spherical volumeD, of radius
d. By making use of Eqs.sA5d and sA8d, we can directly
write in the spherical polar coordinates

Wsr 1,r 2,kd = s4pd2askdo
n=0

`

o
m=−n

n

jnskr1d jnskr2d

3 Yn
m*su1,w1dYn

msu2,w2d, r 1,r 2 P D,

s10d

where jnskrd andYn
msu ,wd are spherical Bessel functions and

spherical harmonics, respectively. Next we define the func-
tions

fmnsr ,kd ; jnskrdYn
msu,wd, − n ø mø n, s11d

which are known to be solutions of the Helmholtz equation

¹2fmnsr ,kd + k2fmnsr ,kd = 0, s12d

and are finite at the originsRef. f16g, Sec. 9.6d. With the help
of Eq. sA6d, the functionsfmnsr ,kd are found to be orthogo-
nal in D, i.e.,

hfmnsr ,kd,fm8n8sr ,kdjD = Cnskddmm8dnn8, s13d

where

Cnskd ; E
0

d

r2jn
2skrddr =

d3

2
f jn

2skdd − jn−1skdd jn+1skddg.

s14d

The first expression in Eq.s14d and Eq.sA10d indicate that if
d→`, thenCnskd→`, which is one of the reasons for con-
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sidering a finite volume. The latter expression in Eq.s14d is
obtained from Eq.sA11d. For later purposes, we define the
functions

cmnsr ,kd ;
1

ÎCnskd
jnskrdYn

msu,wd, s15d

which constitute an orthonormal set of functions inD, i.e.,

hcmnsr ,kd,cm8n8sr ,kdjD = dmm8dnn8. s16d

Note that the orthogonality is due solely to the orthogonality
with respect to the angular coordinates. Furthermore, the
shapes of the functionscmnsr ,kd are independent of the size
of the volume, only the normalization factorsCnskd depend
on it.

In terms of the functionscmnsr ,kd, we can now express
the cross-spectral density function of Eq.s10d in the form

Wsr 1,r 2,kd = o
n=0

`

o
m=−n

n

ln
s1dskdcmn

* sr 1,kdcmnsr 2,kd, s17d

where

ln
s1dskd = s4pd2askdCnskd. s18d

Using Eq.s16d, one readily finds that the functionsln
s1dskd of

Eq. s18d and cmnsr ,kd of Eq. s15d are, respectively, the ei-
genvalues and the orthonormal eigenfunctions of the second-
kind Fredholm integral equation whose kernel is the cross-
spectral density function given in Eq.s17d. Consequently,
Eq. s17d is, within a spherical domain of radiusd, the
coherent-mode representation of the cross-spectral density
function which is proportional to the imaginary part of the
infinite-space Green function. We remark that often only one
index labels the modes, resulting in a single summation in
the coherent-mode representation. In this case, however, the
use of two indices is appropriate and, therefore, the mode
representation consists of two summations. Furthermore, we
note that the eigenvalue labeled by indexn is s2n+1d-fold
degenerate. The corresponding 2n+1 eigenfunctions, i.e.,
those with the samen but differentm, are equally weighted
in the mode representation, and are orthonormal as evi-
denced by Eq.s16d.

The spectral density of the field at pointr is obtained
directly as

Ssr ,kd = Wsr ,r ,kd = o
n=0

`

o
m=−n

n

ln
s1dskducmnsr ,kdu2, s19d

which, when integrated over the volumeD, yields the total
energy of the field inD,

E
D

Ssr ,kdd3r = o
n=0

`

s2n + 1dln
s1dskd. s20d

In obtaining this expression, we employed the facts that the
eigenfunctions are normalized and that the eigenvalues are
s2n+1d-fold degenerate. Substituting the first expression of
Eq. s14d into Eq. s18d and then using Eq.sA9d, the summa-
tion in Eq. s20d can be carried out, resulting in

E
D

Ssr ,kdd3r = 4paskdVD, s21d

whereVD is the volume of the sphereD. Exactly the same
result is obtained by settingr 1=r 2 in Eq. s7d and then inte-
grating the ensuing expression over the volumeD.

The distribution of the eigenvalues given by Eq.s18d is
illustrated in Fig. 1, where the dots show the behavior of the
ratio ln

s1dskd /l1
s1dskd as a function of the mode numbern.

sThe stars in Fig. 1 are related to the electromagnetic analy-
sis, and are explained later in Sec. V of the paper.d The lower
and upper dot curves correspond to spherical volumes of
radiusd/l=1000 andd/l=1500, respectivelysl=2p /k is
the wavelength of the lightd. Furthermore, for presentational
reasons, the ratioln

s1dskd /l1
s1dskd has been computed only for

the indicesn=h200,600,1000, . . .j. It is obvious that the big-
ger the volume, the more modes are needed to adequately
represent the cross-spectral density function. We denote by
nmax the maximum value of indexn for which the modes
contribute significantly to the mode representation, and find
from Fig. 1 thatnmax>6300 for d/l=1000, whereasnmax
>9450 for d/l=1500. For other values of radiusd/l, the
curves representing the eigenvalues were observed to be
similar in shape to those plotted in Fig. 1, andnmax was
found to increase linearly with radiusd/l. Since there are
2n+1 eigenfunctions for eachn, the number of significant
eigenfunctions is proportional tosd/ld2, i.e., to the surface
area of the spherical volumeD.

The shapes of the eigenfunctionscmnsr ,kd are illustrated
in Fig. 2, where the squared moduli are shown in polar plots
for indicesmn=h00,01,12j. The graphs are for a spherical
volume of radiusd/l=1000, with kr=10. In the direction
specified by the anglessu ,wd, the value of the function is
indicated by the distance from the origin, which is located in
the middle of the graph.

FIG. 1. Behavior of the ratio of eigenvaluesln
s jdskd /l1

s1dskd as a
function of mode numbern for spherical volumes of radiusd
=1000l slower curved andd=1500l supper curved. Dots are forj
=1, corresponding to both the scalar and the first set of electromag-
netic eigenvalues, whereas stars are forj =2, corresponding to the
second set of electromagnetic eigenvalues. In both curves, the dots
and stars are plotted for modes with numbern
=h200,600,1000, . . .j andn=h1,400,800, . . .j, respectively.
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IV. COHERENT-MODE REPRESENTATION
OF ELECTROMAGNETIC FIELDS

The coherent-mode representation of electromagnetic
fields is constructed in full analogy to that of the scalar
fields. We give here only a brief summary of the theory; for
a complete treatment we refer to Ref.f5g ssee also Ref.f6gd.
The coherence properties of a stationary, random electromag-
netic field are, at any frequencyv, described by the cross-
spectral density tensorsf1g. As is customary, we consider in
the following only the electric component of the electromag-
netic field. The electric cross-spectral density tensor is de-
fined as

WJ sr 1,r 2,vd =
1

2p
E

−`

`

GJsr 1,r 2,tdexpsivtddt, s22d

where

GJsr 1,r 2,td = kE*sr 1,tdEsr 2,t + tdl s23d

is the electric mutual coherence tensor. The functionEsr ,td
is the complex analytic signal representing the electric field

vector. As seen from Eq.s23d, the tensorGJsr 1,r 2,td de-
scribes the electric-field correlations between two space-time
points.

It is readily shown that the electric cross-spectral density
tensor satisfies some specific Hermiticity, non-negative defi-
niteness, and square-integrability conditionsf5g. These prop-
erties imply that it may be expanded as a Mercer series of the
form f5,6g

WJ sr 1,r 2,vd = o
n

lnsvdcn
*sr 1,vdcnsr 2,vd, r 1,r 2 P D, s24d

when the inner product for vector-valued complex functions
in the volumeD snot necessarily finite, in generald is defined
to be

hAsr d,Bsr djD ; E
D

A*sr d ·Bsr dd3r . s25d

In Eq. s24d, the quantitieslnsvd andcnsr ,vd are the eigen-
values and vector-valued eigenfunctions, respectively, of the
homogeneous Fredholm integral equation of the second kind,

E
D

cnsr 1,vd ·WJ sr 1,r 2,vdd3r1 = lnsvdcnsr 2,vd. s26d

The eigenvalues are real and non-negative, and the eigen-
functions form an orthonormal set in the sense that

hcnsr ,vd,cmsr ,vdjD = dnm. s27d

Although the orthogonality does not automatically hold if an
eigenvalue is degenerate, the corresponding eigenfunctions
can always be made orthogonal.

It is straightforward to verify that the factorscnsr ,vd and
the tensors

WJ nsr 1,r 2,vd = lnsvdcn
*sr 1,vdcnsr 2,vd s28d

obey the appropriate Helmholtz equations and Maxwell di-
vergence conditions. In addition, since the tensors

WJ nsr 1,r 2,vd are of a spatially factored form, they may be
understood as elementary cross-spectral density tensors rep-
resenting completely coherentsand completely polarized
f17gd electric fields in the space-frequency domainf18g, in
the sense of the definition of the spectral degree of coherence
for electromagnetic fieldsf5,18,19g,

msr 1,r 2,vd =
iWJ sr 1,r 2,vdiF

ftrWJ sr 1,r 1,vdg1/2ftrWJ sr 2,r 2,vdg1/2
. s29d

In this equation

iWJ sr 1,r 2,vdiF = trfWJ sr 1,r 2,vd ·WJ †sr 1,r 2,vdg1/2

= Fo
i,j

uWijsr 1,r 2,vdu2G1/2
, s30d

with the dagger standing for the Hermitian adjoint, denotes
the Frobenius norm. Thus, in analogy with the scalar theory,
Eq. s24d may be called the coherent-mode representation of
the electric cross-spectral density tensor.

V. COHERENT-MODE REPRESENTATION
OF A HOMOGENEOUS AND ISOTROPIC

ELECTROMAGNETIC WAVE FIELD

Next we consider the specific electromagnetic fields
whose electric cross-spectral density tensor is proportional to
the imaginary part of the infinite-space Green tensor
f10–13,15g. A classic example of such a statistically homo-
geneous and isotropic random electromagnetic field is the
blackbody radiation for which the cross-spectral density ten-
sors already have been known for quite some timef11–13g.
Recently, it was demonstrated that all statistically homoge-
neous and isotropic current source distributions within a low-
loss medium, not necessarily those in thermal equilibrium,
generate a wave field whose coherence properties are de-
scribed by the imaginary part of the infinite-space Green ten-
sor f10g. Analogously to the scalar case, such a field may be
understood to consist of an isotropic distribution of angularly
uncorrelated plane waves which, in addition, are unpolarized
f15g.

FIG. 2. Illustration of functionsucmnsr ,kdu2 for indices mn
=h00,01,12j, when the radius of the sphere isd/l=1000 andkr
=10. The value of the function is indicated by the distance from the
origin, located in the center of each graph. The orientation of the
coordinate axes is shown in the inset.
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A. Electric cross-spectral density tensor

The electric cross-spectral density tensor that we consider
is written asf10–13,15g

WJ sr 1,r 2,kd =
s4pd2askd

k
ImfGJsr 1,r 2,kdg, s31d

with the infinite-space Green tensor given by the expression
f20g

GJsr 1,r 2,kd = SUJ +
1

k2 = = DGsr 1,r 2,kd. s32d

The tensorUJ is the unit tensor andGsr 1,r 2,kd is the scalar
Green function introduced in Eq.s8d. The imaginary part of

GJsr 1,r 2,kd, for realk, is readily obtained as

ImfGJsr 1,r 2,kdg =
k

4p
HF j0skRd −

j1skRd
kR

GUJ + j2skRdR̂R̂J ,

s33d

whereR̂=R /R with R=r 1−r 2, andR= uRu. Note that when
4askd is equal to Planck’s law, Eq.s31d is identical with the
cross-spectral density tensor of blackbody radiation.

B. Spherical vector wave functions

As in the scalar case, we consider the field in a spherical
volume, which suggests us to introduce the spherical vector
wave functionsf20–24g. They are constructed from the sca-
lar functionsfmnsr ,kd of Eq. s11d as follows:

L mnsr ,kd =
1

k
= fmnsr ,kd, s34d

M mnsr ,kd = = 3 ffmnsr ,kdr g, s35d

Nmnsr ,kd =
1

k
= 3 = 3 ffmnsr ,kdr g. s36d

Note that whenn=0, so that necessarily alsom=0, the two
latter functions are equal to zero, as can be seen from the
explicit forms given in Eqs.sB2d andsB3d. However, unless
otherwise stated, the equations that we encounter are for-
mally valid for n=0 as well. FunctionsM mnsr ,kd and
Nmnsr ,kd obey the homogeneous vectorial wave equation,
i.e.,

= 3 = 3 HM mnsr ,kd
Nmnsr ,kd J − k2HM mnsr ,kd

Nmnsr ,kd J = 0, s37d

whereas the same is not true for functionsL mnsr ,kd. From
the definitions, one can readily verify that

= ·L mnsr ,kd Þ 0, s38d

= ·HM mnsr ,kd
Nmnsr ,kd J = 0. s39d

Owing to these relations, functionsM mnsr ,kd and Nmnsr ,kd
are called transversalsor solenoidald vector wave functions,

whereasL mnsr ,kd is a longitudinal sor irrotationald wave
function. Furthermore, since the functionsfmnsr ,kd satisfy
the scalar Helmholtz equation, Eq.s12d, the vectors in Eqs.
s34d–s36d are solutions of the vectorial Helmholtz equation,
i.e.,

¹25 L mnsr ,kd
M mnsr ,kd
Nmnsr ,kd

6 + k25 L mnsr ,kd
M mnsr ,kd
Nmnsr ,kd

6 = 0. s40d

We also mention the following symmetry relations:

M mnsr ,kd =
1

k
= 3 Nmnsr ,kd, s41d

Nmnsr ,kd =
1

k
= 3 M mnsr ,kd. s42d

For this work, we need to know the orthogonality rela-
tions of the vector wave functions. They are obtained by
straightforward, although quite lengthy, calculations outlined
in Appendix B. We have included the derivation of the or-
thogonality relations for completeness, since in our analysis
we use a somewhat different form for the functionsfmnsr ,kd
than seems to be customary in the literaturef20,21g. Often
the angular part offmnsr ,kd is written in terms of the asso-
ciated Legendre functions and trigonometric functions, in-
stead of the spherical harmonics that we employfsee Eq.
s11dg. Use of trigonometric functions results in two sets of
vector wave functions, one of which is even and the other
odd in the angular variablew.

In the sense of Eq.s25d, the orthogonality relations in a
finite spherical volume are of the formssee Appendix Bd

hL mnsr ,kd,M m8n8sr ,kdjD = 0, s43d

hL mnsr ,kd,Nm8n8sr ,kdjD = nsn + 1d
d

k2 jn
2skdddmm8dnn8,

s44d

hM mnsr ,kd,Nm8n8sr ,kdjD = 0, s45d

hL mnsr ,kd,L m8n8sr ,kdjD = FDnskd −
d

k2 jn
2skddGdmm8dnn8,

s46d

hM mnsr ,kd,M m8n8sr ,kdjD = nsn + 1dCnskddmm8dnn8, s47d

hNmnsr ,kd,Nm8n8sr ,kdjD = nsn + 1dDnskddmm8dnn8, s48d

whereCnskd are the coefficients given in Eq.s14d, and

Dnskd =
n + 1

2n + 1
Cn−1skd +

n

2n + 1
Cn+1skd. s49d

We emphasize that the orthogonality properties in Eqs.
s43d–s48d again are due to the orthogonality with respect to
the angular coordinates only.
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In an infinite space, the vector wave functions are not only
orthogonal in indicesm andn, but also with respect to wave
numberk, which constitutes a continuous set of variables.
The orthogonality relations are explicitly written in the form
ssee Appendix Bd

hL mnsr ,kd,M m8n8sr ,k8dj` = 0, s50d

hL mnsr ,kd,Nm8n8sr ,k8dj` = 0, s51d

hM mnsr ,kd,Nm8n8sr ,k8dj` = 0, s52d

hL mnsr ,kd,L m8n8sr ,k8dj` =
p

2

dsk − k8d
k2 dmm8dnn8, s53d

hM mnsr ,kd,M m8n8sr ,k8dj` = nsn + 1d
p

2

dsk − k8d
k2 dmm8dnn8,

s54d

hNmnsr ,kd,Nm8n8sr ,k8dj` = nsn + 1d
p

2

dsk − k8d
k2 dmm8dnn8,

s55d

where we have used subscript` to emphasize that they are
for an infinite space.

C. Expansion of the infinite-space Green tensor in terms
of spherical vector wave functions

In this subsection, the infinite-space Green tensor given in
Eq. s32d is expanded in terms of the spherical vector wave
functions by means of the Ohm-Rayleigh methodf20g.
Analogous expansions, in terms of appropriate vector wave
functions, are explicitly known for the Green tensors in vari-
ous geometries, including infinite space. However, we have
included the derivation here since the longitudinal vector
wave functionsL mnsr ,kd are often neglectedf20g, and be-
cause we use spherical harmonics in thefmnsr ,kd functions
leading to orthogonality relations for the vector wave func-
tions that are slightly different from those presented in some
publicationsf20–22g.

The infinite-space Green tensor obeys the following two
wave equationsf20g:

=i 3 =i 3 GJsr 1,r 2,kd − k2GJsr 1,r 2,kd = dsr 1 − r 2dUJ ,

i = s1,2d, s56d

where=i operates on the spatial coordinater i and k is as-
sumed to have a vanishingly small imaginary part. The Dirac

d-function term on the right-hand side can be developed us-
ing the vector wave functions whose completenessf25g guar-
antees the existence of the following expansion:

dsr 1 − r 2dUJ =E
0

`

dko
n=1

`

o
m=−n

n

fM mn
* sr 1,kdAmnsr 2,kd

+ Nmn
* sr 1,kdBmnsr 2,kdg

+E
0

`

dko
n=0

`

o
m=−n

n

L mn
* sr 1,kdCmnsr 2,kd,

s57d

where the integration variable is denoted byk in order to
distinguish it from the fixed wave numberk. The first sum in
the term involving the transversal wave functions starts with
1 sincen=0 corresponds to a zero term. Using the infinite-
space orthogonality relations, Eqs.s50d–s55d, we find that

Amnsr ,kd =
2

p

k2

nsn + 1d
M mnsr ,kd, n ù 1, s58d

Bmnsr ,kd =
2

p

k2

nsn + 1d
Nmnsr ,kd, n ù 1, s59d

Cmnsr ,kd =
2k2

p
L mnsr ,kd, n ù 0 s60d

leading to the following completeness relationship valid for
an infinite space:

dsr 1 − r 2dUJ

=
2

p
E

0

`

dkk2o
n=1

`

o
m=−n

n
1

nsn + 1d
fM mn

* sr 1,kdM mnsr 2,kd

+ Nmn
* sr 1,kdNmnsr 2,kdg

+
2

p
E

0

`

dkk2o
n=0

`

o
m=−n

n

L mn
* sr 1,kdL mnsr 2,kd. s61d

For the Green tensor, we consider the following trial ex-
pansion:

GJsr 1,r 2,kd

=
2

p
E

0

`

dkk2o
n=1

`

o
m=−n

n
1

nsn + 1d
famnsk,kdM mn

* sr 1,kd

3M mnsr 2,kd + bmnsk,kdNmn
* sr 1,kdNmnsr 2,kdg

+
2

p
E

0

`

dkk2o
n=0

`

o
m=−n

n

gmnsk,kdL mn
* sr 1,kdL mnsr 2,kd.

s62d
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Inserting this expression and Eq.s61d into Eq. s56d, then
using Eq.s37d, and noting that=3L mnsr ,kd=0 ffrom the
definition s34dg, one obtains

amnsk,kd = bmnsk,kd =
1

k2 − k2 , s63d

gmnsk,kd = −
1

k2 , s64d

and therefore

GJsr 1,r 2,kd =
2

p
E

0

` dkk2

k2 − k2o
n=1

`

o
m=−n

n
1

nsn + 1d
fM mn

* sr 1,kdM mnsr 2,kd + Nmn
* sr 1,kdNmnsr 2,kdg

−
2

p
E

0

` dkk2

k2 o
n=0

`

o
m=−n

n

L mn
* sr 1,kdL mnsr 2,kd. s65d

The k integrations can be carried out analytically as demonstrated in Appendix C. Furthermore, at this stage, we perform the
summations in the longitudinal part. These operationsfsee Eqs.sC1d, sC2d, sA5d, andsC5dg result in the expression

GJsr 1,r 2,kd = iko
n=1

`

o
m=−n

n
1

nsn + 1dHM mn
* sr 1,kdM mn

s1dsr 2,kd + Nmn
* sr 1,kdNmn

s1dsr 2,kd, r1 , r2

M mn
s2dsr 1,kdM mnsr 2,kd + Nmn

s2dsr 1,kdNmnsr 2,kd, r1 . r2
J

−
1

4pk2o
n=1

`
1

nsn + 1d
s=1 3 =1 3 ds=2 3 =2 3 dF r,

n

r.
n+1Pnscosgdr 1r 2G −

1

4pk2=1=2
1

ur 1 − r 2u
, s66d

where r,=minhur 1u , ur 2uj, r.=maxhur 1u , ur 2uj, g is the angle
betweenr 1 and r 2, and

M mn
s1dsr ,kd = = 3 fhn

s1dskrdYn
msu,wdr g, s67d

M mn
s2dsr ,kd = = 3 fhn

s1dskrdYn
m*su,wdr g, s68d

Nmn
s1dsr ,kd =

1

k
= 3 = 3 fhn

s1dskrdYn
msu,wdr g, s69d

Nmn
s2dsr ,kd =

1

k
= 3 = 3 fhn

s1dskrdYn
m*su,wdr g. s70d

Note that the vector functions with superscripts1d differ
from the wave functions defined in Eqs.s35d ands36d in that
they involve spherical Hankel functions instead of spherical
Bessel functions. The functions with superscripts2d, in addi-
tion to containing spherical Hankel functions, involve
complex-conjugate spherical harmonics.

D. Coherent-mode representation of the cross-spectral density
tensor in Eq. (31)

We are now in a position of constructing, in a finite
spherical volumeD, the coherent-mode representation of the
cross-spectral density tensor that is proportional to the
infinite-space Green tensor. We note that the last two terms in
Eq. s66d are real, except for the prefactor 1/k2, which nev-
ertheless can be treated as a real number when the losses are
vanishingly small. Inserting Eq.s66d into Eq.s31d and taking
the imaginary part of the remaining terms as outlined in Ap-
pendix D, we arrive at the expression

WJ sr 1,r 2,kd = s4pd2askdo
n=1

`

o
m=−n

n
1

nsn + 1d

3fM mn
* sr 1,kdM mnsr 2,kd + Nmn

* sr 1,kd

3Nmnsr 2,kdg. s71d

This formula is readily rewritten as

WJ sr 1,r 2,kd = o
n=1

`

o
m=−n

n

ln
s1dskdcmn

s1d*sr 1,kdcmn
s1dsr 2,kd

+ o
n=1

`

o
m=−n

n

ln
s2dskdcmn

s2d*sr 1,kdcmn
s2dsr 2,kd,

s72d

where

ln
s1dskd = s4pd2askdCnskd, s73d

cmn
s1dsr ,kd =

1

fnsn + 1dCnskdg1/2M mnsr ,kd, s74d

and

ln
s2dskd = s4pd2askdDnskd, s75d

cmn
s2dsr ,kd =

1

fnsn + 1dDnskdg1/2Nmnsr ,kd. s76d

In these expressions, the parametersCnskd and Dnskd are
those defined in Eqs.s14d and s49d, respectively. Note that
the quantitiesln

s1dskd are the eigenvalues encountered already
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in the scalar case, cf. Eq.s18d. It follows directly from
Eqs. s47d and s48d that, in a finite spherical volumeD,
hcmn

s jd sr ,kd ,c
m8n8
s jd sr ,kdjD=dmm8dnn8, for j =s1,2d. Further-

more, Eq.s45d implies that hcmn
s1dsr ,kd ,c

m8n8
s2d sr ,kdjD=0 for

all values of the indices. It is now an easy task to verify that
ln

s jdskd andcmn
s jd sr ,kd, with j =s1,2d, are thefs2n+1d-fold de-

generateg eigenvalues and orthonormal eigenfunctions of the
vectorial Fredholm integral equation given in Eq.s26d, with
the cross-spectral density tensor of Eq.s71d as the kernel.
Therefore, Eq.s72d is, within a finite spherical volume, the
coherent-mode representation of the cross-spectral density
tensor in Eq.s31d.

Consider next the total energy of the field in the spherical
volumeD. The energy density at a pointr is given by

Ssr ,kd = trfWJ sr ,r ,kdg

= o
n=1

`

o
m=−n

n

fln
s1dskdcmn

s1d*sr ,kd · cmn
s1dsr ,kd

+ ln
s2dskdcmn

s2d*sr ,kd · cmn
s2dsr ,kdg, s77d

which, when integrated over the volumeD, yields the total
energy inD as

E
D

Ssr ,kdd3r = o
n=1

`

s2n + 1dfln
s1dskd + ln

s2dskdg. s78d

Inserting Eqs.s73d and s75d, the first form of Eq.s14d, and
Eq. s49d into the above formula, rearranging the resulting
expression, and then using Eq.sA9d, we end up with

E
D

Ssr ,kdd3r = 8paskdVD. s79d

Exactly the same result is obtained by first taking the limit
r 1→ r 2 in Eq. s31d, giving

WJ sr ,r ,kd =
8paskd

3
UJ , s80d

and then integrating the trace ofWJ sr ,r ,kd over the volume
D.

Figure 1 illustrates the distribution of the eigenvalues
given in Eqs.s73d and s75d, by showing the behavior of the
ratios ln

s1dskd /l1
s1dskd sdotsd and ln

s2dskd /l1
s1dskd sstarsd as a

function of the mode numbern. The lower curve corresponds
to a spherical volume of radiusd/l=1000, whereas the up-
per curve is ford/l=1500. The eigenvalues are plotted only
for certain modes; the dots and stars are forn
=h200,600,1000, . . .j andn=h1,400,800, . . .j, respectively.
As discussed earlier in connection with scalar fields, Fig. 1
evidences the fact that the bigger the volume, the more
modes, in the electromagnetic case bothcmn

s1dsr ,kd and
cmn

s2dsr ,kd type, are required to represent the cross-spectral
density tensor with a sufficient accuracy. We also observe
that, to a good approximation, the number of significant
modes,nmax, is the same for both types of modes. Further-
more, the ratiosln

s1dskd /l1
s1dskd and ln

s2dskd /l1
s1dskd are also

approximately equal and lie on the same curve for a fixedd,

although they are strictly different, as can be seen from Eqs.
s49d, s14d, andsA12d.

The shapes of the eigenfunctionscmn
s1dsr ,kd andcmn

s2dsr ,kd
are demonstrated in Fig. 3 by showing in polar diagrams the
behavior of their squared moduli for indicesmn=h13,14j,
when kr=1 and kr=10. The upper and lower rows corre-
spond to functionscmn

s1dsr ,kd andcmn
s2dsr ,kd, respectively, and

the graphs are for a spherical volume of radiusd/l=1000. In
the direction specified by the anglessu ,wd, the modulus
squared of the function is indicated by the distance from the
origin, which is located in the center of each graph. We see
from Fig. 3 that, whenkr=1, the absolute values of functions
c13

s1dsr ,kd and c13
s2dsr ,kd are markedly different, but forkr

=10 they are quite similar. In fact, for anymn the squared
moduli ucmn

s1dsr ,kdu2 and ucmn
s2dsr ,kdu2 have asymptotically as

kr→` the same angular dependence.

E. Degree of coherence of the field represented by the cross-
spectral density tensor in Eq. (31)

It is of interest to calculate the electromagnetic degree of
coherence as given by Eq.s29d for the field characterized by
the electric cross-spectral density tensor in Eq.s31d. A direct
substitution leads to

msr 1,r 2,kd =
1
Î3
F j0

2skRd +
1

2
j2
2skRdG1/2

, s81d

whereR= ur 1−r 2u. We point out that earlier a definition for
theelectromagneticdegree of coherence based on the visibil-
ity of intensity fringes in Young’s double-slit interference
experiment has appeared in the literaturef26g, evaluated also
for blackbody fieldsf11,15g. This definition results in a sinc
function for the degree of coherence, i.e.,

FIG. 3. Illustration of functionsucmn
s1dsr ,kdu2 supper rowd and

ucmn
s2dsr ,kdu2 slower rowd for indicesmn=h13,14j, whenkr=1 and

kr=10. The radius of the sphere is chosen asd/l=1000. The value
of the function is indicated by the distance from the origin, which is
located in the middle of each graph. The orientation of the coordi-
nate axes is shown in the inset.
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mvissr 1,r 2,kd = j0skRd =
sinkR

kR
. s82d

The first zero of this function is located atR=l /2, demon-
strating a generally accepted result that the coherence length
of blackbody radiation is on the order of the wavelength for
each spectral component. However, the degree of coherence
in Eq. s81d qualitatively implies this result as well, as is
evidenced by Fig. 4, in which the quantitiesmsr 1,r 2,kd and
umvissr 1,r 2,kdu are plotted as a function ofR/l. From Fig. 4,
or from Eq. s81d, we also see that whenr 1→ r 2, then
msr 1,r 2,kd→1/Î3. This is due to the fact that blackbody
radiation is a fully unpolarized field for which no definite
phase relations exist between the three electric-field compo-
nents at a single pointsor between two pointsd. Therefore, for
this field, the degree of coherence assumes a value less than
unity whenr 1→ r 2 f19,31g.

VI. SUMMARY AND CONCLUSIONS

We constructed, in a finite spherical volume, the coherent-
mode representation of specific statistically homogeneous
and isotropic scalar fields whose cross-spectral density func-
tion is proportional to the imaginary part of the infinite-space
Green function. To our knowledge, this is the first three-
dimensional scalar coherent-mode representation ever de-
rived. Furthermore, we applied the recently formulated rig-
orous theory of electromagnetic coherent modes, and
developed, in full analogy to the scalar case, the coherent-
mode representation for the field whose cross-spectral den-
sity tensor is proportional to the infinite-space Green tensor.
The results cover the fundamental case of blackbody radia-
tion, but are valid more generally. We also studied the energy
distribution among the modes and illustrated, using polar
graphs, the geometrical character of some of the lower-order
modes.

We point out that two different definitions of the electro-
magnetic degree of coherence have appeared in the literature,
one based on the average correlation between the electric-
field componentsf5,18,19,30g and the other on the visibility
of intensity fringes in Young’s interference experiment
f27–29g ssee also Refs.f31,32gd. We compared these two

degrees of coherence by computing them for the type of
homogeneous and isotropic random fields considered in this
work, e.g., blackbody radiation. We found that both quanti-
ties lead to the conclusion that, for every spectral component,
the correlation length in blackbody radiation is on the order
of the wavelength. However, only the correlation-based defi-
nition of the electromagnetic degree of coherence implies
that the elementary modes, i.e., fields for which the cross-
spectral density tensor is of a spatially factored form, are
fully coherentsand fully polarizedd. It is our hope that the
work presented in this paper inspires further research on the
electromagnetic theory of optical coherence, which so far has
attracted considerably less attention than the customary sca-
lar coherence theory, but which is of increasing importance
in near-field optics, fiber optics, and in the studies dealing
with light-matter interactions, for instance.
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APPENDIX A: USEFUL FORMULAS

Orthogonality relation for exponential functionssEq.
12.141 in Ref.f33gd,

E
0

2p

expfism− m8dwgdw = 2pdmm8. sA1d

Differential equation obeyed by associated Legendre func-
tions sEq. 12.71 in Ref.f33gd,

1

sinu

d

du
Fsinu

dPn
mscosud
du

G + Fnsn + 1d −
m2

sin2 u
GPn

mscosud

= 0. sA2d

Integral involving associated Legendre functionsfexercise
12.5.8sad in Ref. f33gg,

E
0

p F ]Pn
mscosud

]u

]Pn8
m scosud

]u

+
m2

sin2 u
Pn

mscosudPn8
m scosudGsinudu

=
2nsn + 1d

2n + 1

sn + md!
sn − md!

dnn8. sA3d

Explicit formula for spherical harmonicsYn
msu ,wd sEq.

12.146 in Ref.f33gd,

Yn
msu,wd = s− 1dmÎ2n + 1

4p

sn − md!
sn + md!

Pn
mscosudexpsimwd.

sA4d

Addition theorem for spherical harmonicssEq. 12.197 in
Ref. f33gd,

FIG. 4. Behavior of the quantitiesmsr 1,r 2,kd fEq. s81d, solid
lineg and umvissr 1,r 2,kdu fEq. s82d, dashed lineg as a function of
R/l.
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Pnscosgd =
4p

2n + 1 o
m=−n

n

Yn
m*su1,w1dYn

msu2,w2d, sA5d

wheresui ,wid, with i =s1,2d, are the angular coordinates of
the position vectorsr i, andg is the angle betweenr 1 andr 2.

Normalization and orthogonality relation for spherical
harmonicssEq. 12.147 in Ref.f33gd,

E
0

2p E
0

p

Yn
m*su,wdYn8

m8su,wdsinududw = dmm8dnn8.

sA6d

Expansion of 1/ur 1−r 2u in spherical polar coordinatessEq.
3.70 in Ref.f16gd,

1

ur 1 − r 2u
= 4po

n=0

`

o
m=−n

n
1

2n + 1

r,
n

r.
n+1Yn

m*su1,w1dYn
msu2,w2d,

sA7d

wherer,=minhur 1u , ur 2uj and r.=maxhur 1u , ur 2uj.
Addition theorem for spherical Bessel functionsjnsrd sEq.

10.1.45 in Ref.f34gd,

sinskur 1 − r 2ud
kur 1 − r 2u

= o
n=0

`

s2n + 1d jnskr1d jnskr2dPnscosgd,

sA8d

wherek is an arbitrary complex number,r i = ur iu for i =1,2,
andg=\sr 1,r 2d.

Summation of a series involvingjnsrd sEq. 10.1.50 in Ref.
f34gd,

o
n=0

`

s2n + 1d jn
2skrd = 1, sA9d

for all k.
Two integrals involving spherical Bessel functionssEq.

3–26 in Ref.f20g, Eq. 68 in Appendix D of Ref.f35gd,

E
0

`

r2jnskrd jnsk8rddr =
p

2

dsk − k8d
k2 , sA10d

E
0

r

r82jn
2skr8ddr8 =

r3

2
f jn

2skrd − jn−1skrd jn+1skrdg.

sA11d

Two recurrence relations for spherical Bessel functionssEqs.
10.1.19 and 10.1.20 in Ref.f34gd,

jn−1srd + jn+1srd = s2n + 1d
jnsrd

r
, sA12d

njn−1srd − sn + 1d jn+1srd = s2n + 1d
] jnsrd

]r
. sA13d

Asymptotic formulas for spherical Bessel functionssEqs.
11.156 and 11.158 in Ref.f33gd,

jnsrd ,
2nn!

s2n + 1d!
rn whenr → 0, sA14d

jnsrd ,
1

r
sinSr −

np

2
D whenr → `. sA15d

Small-argument expansion for spherical Neumann function
sEqs. 11.157 in Ref.f33gd,

nnsrd , −
s2nd!
2nn!

r−n−1 whenr → 0. sA16d

Integral involving spherical Bessel functionssEqs. 4–14 and
4–16 Ref.f20gd,

E
0

` Fskd jnskr1d jnskr2d
k2 − k2 dk =

ipFskd
2k

jnskr,dhn
s1dskr.d,

sA17d

where r,=minhur 1u , ur 2uj and r.=maxhur 1u , ur 2uj. Further-
more,hn

s1dsrd= jnsrd+ innsrd, wherennsrd is the spherical Neu-
mann function, is the spherical Hankel function of the first
kind. The above equation holds assuming thatFskd is an
even function ofk, Fskd /k is an analytic function in thek
plane, and thatk has a positive imaginary part.

Special case of the above integral for spherical Bessel
functions, withFskd=1,

E
0

` jnskr1d jnskr2d
k2 − k2 dk =

ip

2k
jnskr,dhn

s1dskr.d

−
p

2s2n + 1dk2

r,
n

r.
n+1 . sA18d

This result is obtained analogously to Eq.sA17d, but noting
in the derivation that whenjnskr2d is expressed in terms of
the first- and second-order spherical Hankel functions, a
first-order pole atk=0 is present, and needs to be taken into
account.

Operators= and=3A in spherical polar coordinates,

= = r̂
]

]r
+

û

r

]

]u
+

ŵ

r sinu

]

]w
, sA19d

= 3 A =
1

r sinu
F ]ssinuAwd

]u
−

]Au

]w
Gr̂ + F 1

r sinu

]Ar

]w

−
1

r

]srAwd
]r

Gû +
1

r
F ]srAud

]r
−

]Ar

]u
Gŵ, sA20d

where sr̂ , û ,ŵd are the unit vectors along the axes of the
coordinate system.

APPENDIX B: ORTHOGONALITY OF SPHERICAL
VECTOR WAVE FUNCTIONS

The orthogonality relations are computed by substituting
into Eq.s25d the explicit forms of the vector wave functions,
which with the help of Eqs.sA19d andsA20d are found to be
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L mnsr ,kd =
1

k

] jnskrd
]r

Yn
msu,wdr̂ +

jnskrd
kr

F ]Yn
msu,wd
]u

û

+
im

sinu
Yn

msu,wdŵG , sB1d

M mnsr ,kd = jnskrdF im

sinu
Yn

msu,wdû −
]Yn

msu,wd
]u

ŵG ,

sB2d

Nmnsr ,kd =
nsn + 1d

kr
jnskrdYn

msu,wdr̂ +
1

kr

]

]r
frj nskrdg

3F ]Yn
msu,wd
]u

û +
im

sinu
Yn

msu,wdŵG . sB3d

In obtaining the last equation, Eq.sA2d is particularly useful.
Note thatM 00sr ,kd=N00sr ,kd=0 fsinceP0

0scosud=1g.
The following integral appears often in deriving the or-

thogonality relations, and is given here for convenience:

E
0

2p E
0

p F m

sinu
Yn

m*su,wd
]Yn8

m8su,wd

]u

+
m8

sinu

Yn
m*su,wd

]u
Yn8

m8su,wdGsinududw = 0, sB4d

which holds for allm,m8 ,n,n8. This formula is obtained by
substituting from Eq.sA4d for spherical harmonics, carrying
out the resultingw integration using Eq.sA1d, and then not-
ing that for associated Legendre functionsPn

ms±1d=0 for m
Þ0 sEq. 12.91 in Ref.f33gd. EquationsB4d can be verified
also for indexm=0. Another integral involving angular co-
ordinates that is frequently encountered is of the form

E
0

2p E
0

p F ]Yn
m*su,wd
]u

]Yn8
m8su,wd

]u

+
mm8

sin2 u
Yn

m*su,wdYn8
m8su,wdGsinududw

= nsn + 1ddnn8dmm8, sB5d

which is obtained straightforwardly by using Eqs.sA4d,
sA1d, andsA3d.

We need also the following two relations involving
spherical Bessel functions. First,

nsn + 1d jnskrd jnsk8rd +
]

]r
frj nskrdg

]

]r
frj nsk8rdg

=
kk8r2

2n + 1
fsn + 1d jn−1skrd jn−1sk8rd + njn+1skrd jn+1sk8rdg,

sB6d

which is directly verified by using Eqs.sA12d and sA13d on
the left-hand side. Second,

r2] jnskrd
]r

] jnsk8rd
]r

=
]

]r
frj nskrdg

]

]r
frj nsk8rdg

−
]

]r
frj nskrd jnsk8rdg, sB7d

which, in turn, is verified on performing the derivatives on
the right-hand side. Note that in the above equations, the
argument of Bessel functions iskr rather thanr, which is
present in the recurrence relations.

Orthogonality relations in Eqs. (43), (45), (50), and (52)

The orthogonality relations in Eqs.s43d, s45d, s50d, and
s52d are readily obtained by using Eqs.sB1d–sB3d in Eq.
s25d, and noting that in all cases we end up with the angular
integration of Eq.sB4d.

Orthogonality relations in Eqs. (44) and (51)

Use of Eqs.sB1d and sB3d in Eq. s25d straightforwardly
leads to

hL mnsr ,kd,Nm8n8sr ,k8djD

= Unsn + 1d
kk8

U
0

d

rj nskrd jnsk8rddmm8dnn8. sB8d

The angular integrations encountered in deriving this result
are exactly those of Eqs.sA6d and sB5d. Employing the
asymptotic forms of spherical Bessel functions, Eqs.sA14d
and sA15d, we obtain the orthogonality relations given in
Eqs.s44d and s51d.

Orthogonality relations in Eqs. (46) and (53)

Substituting Eq.sB1d into Eq. s25d, performing the angu-
lar integrations with the help of Eqs.sA6d andsB5d, we find
that

hL mnsr ,kd,L m8n8sr ,k8djD

=
1

kk8
E

0

d Fr2] jnskrd
]r

] jnsk8rd
]r

+ nsn + 1d jnskrd jnsk8rdG
3drdmm8dnn8. sB9d

Next we note that using Eqs.sB6d and sB7d, this equation
can be arranged as

hL mnsr ,kd,L m8n8sr ,k8djD

=
n + 1

2n + 1
E

0

d

r2jn−1skrd jn−1sk8rddrdmm8dnn8

+
n

2n + 1
E

0

d

r2jn+1skrd jn+1sk8rddrdmm8dnn8

− U 1

kk8
U

0

d

rj nskrd jnsk8rddmm8dnn8. sB10d

This form, with the help of Eqs.s14d, s49d, sA10d, sA14d, and
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sA15d, implies the orthogonality relations in Eqs.s46d and
s53d.

Orthogonality relations in Eqs. (47) and (54)

The orthogonality relations, Eqs.s47d and s54d, for the
functionsM mnsr ,kd defined by Eq.sB2d, are obtained from

hM mnsr ,kd,M m8n8sr ,k8djD

= nsn + 1dE
0

d

r2jnskrd jnsk8rddrdmm8dnn8. sB11d

The angular integration encountered in the derivation of this
formula is the one given in Eq.sB5d. Making use of Eqs.
s14d and sA10d at once results in Eqs.s47d and s54d.

Orthogonality relations in Eqs. (48) and (55)

Inserting Eq.sB3d into Eq. s25d, performing the angular
integrations using Eqs.sA6d and sB6d, we find that

hNmnsr ,kd,Nm8n8sr ,k8djD

=
nsn + 1d

kk8
E

0

dHnsn + 1d jnskrd jnsk8rd

+
]

]r
frj nskrdg

]

]r
frj nsk8rdgJdrdmm8dnn8. sB12d

Employing Eq.sB2d, this formula takes on the form

hNmnsr ,kd,Nm8n8sr ,k8djD

=
nsn + 1d2

2n + 1
E

0

d

r2jn−1skrd jn−1sk8rddrdmm8dnn8

+
n2sn + 1d
2n + 1

E
0

d

r2jn+1skrd jn+1sk8rddrdmm8dnn8.

sB13d

We see that use of Eqs.s14d, s49d, and sA10d in the above
formula leads to the orthogonality relations given in Eqs.
s48d and s55d.

APPENDIX C: SIMPLIFICATION OF EQ. (65)

k integration for the M mn„r , k…-function part

First making use of Eqs.s35d and s11d, and then Eq.sA17d, one obtains

2

p
E

0

` dkk2

k2 − k2o
n=1

`

o
m=−n

n
1

nsn + 1d
M mn

* sr 1,kdM mnsr 2,kd

=
2

p
o
n=1

`

o
m=−n

n
1

nsn + 1d
s¹1 3 ds¹2 3 dE

0

` dkk2jnskr1d jnskr2d
k2 − k2 fYn

m*su1,w1dr 1gfYn
msu2,w2dr 2g

= iko
n=1

`

o
m=−n

n
1

nsn + 1dH¹1 3 f jnskr1dYn
m*su1,w1dr 1g¹2 3 fhn

s1dskr2dYn
msu2,w2dr 2g, r1 , r2

¹1 3 fhn
s1dskr1dYn

m*su1,w1dr 1g¹2 3 f jnskr2dYn
msu2,w2dr 2g, r1 . r2,

J sC1d

where¹i3, with i =s1,2d, operates on the vectorr i.

k integration for the N mn„r , k…-function part

Employing Eqs.s36d and s11d, and then Eq.sA18d, after straightforward computations one finds that

2

p
E

0

` dkk2

k2 − k2o
n=1

`

o
m=−n

n
1

nsn + 1d
Nmn

* sr 1,kdNmnsr 2,kd

=
2

p
o
n=1

`

o
m=−n

n
1

nsn + 1d
s¹1 3 ¹1 3 ds¹2 3 ¹2 3 dE

0

` dk jnskr1d jnskr2d
k2 − k2 fYn

m*su1,w1dr 1gfYn
msu2,w2dr 2g

=
i

k
o
n=1

`

o
m=−n

n
1

nsn + 1dH¹1 3 ¹1 3 f jnskr1dYn
m*su1,w1dr 1g¹2 3 ¹2 3 fhn

s1dskr2dYn
msu2,w2dr 2g, r1 , r2

¹1 3 ¹1 3 fhn
s1dskr1dYn

m*su1,w1dr 1g¹2 3 ¹2 3 f jnskr2dYn
msu2,w2dr 2g, r1 . r2

J
− o

n=1

`

o
m=−n

n
1

nsn + 1d
s¹1 3 ¹1 3 ds¹2 3 ¹2 3 d 3 H 1

s2n + 1dk2

r,
n

r.
n+1fYn

m*su1,w1dr 1gfYn
msu2,w2dr 2gJ , sC2d

where¹i3, with i =s1,2d, operates on the vectorr i, andr,=minhur 1u , ur 2uj and r.=maxhur 1u , ur 2uj. We point out that in Ref.
f20g sp. 173d the pole atk=0 is not taken into account and, consequently, the last term of Eq.sC2d is missing in that work
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snoted also on p. 190 in Ref.f21gd.

k integration and summations for the Lmn„r , k…-function part

Making use of Eq.s34d, we obtain

2

p
E

0

` dkk2

k2 o
n=0

`

o
m=−n

n

L mn
* sr 1,kdL mnsr 2,kd,

=
2

pk2¹1¹2o
n=0

`

o
m=−n

n E
0

`

dk jnskr1d jnskr2d

3fYn
m*su1,w1dYn

msu2,w2dg. sC3d

The k integration can be performed as follows:

E
0

`

dk jnskr1d jnskr2d

= lim
d→0

E
0

` k2jnskr1d jnskr2ddk

k2 − sidd2 ,

=− lim
d→0

pd

2
jnsidr,dhn

s1dsidr.d,

=
p

2

r,
n

s2n + 1dr.
n+1 , sC4d

where the second expression follows from Eq.sA17d,
whereas the third is obtained from Eqs.sA14d and sA16d.
Employing Eqs.sC4d and sA7d results in the expression

2

p
E

0

` dkk2

k2 o
n=0

`

o
m=−n

n

L mn
* sr 1,kdL mnsr 2,kd

=
1

4pk2=1=2
1

ur 1 − r 2u
sC5d

for the longitudinal part of the infinite-space Green tensor.

APPENDIX D: IMAGINARY PART OF INFINITE-SPACE
GREEN TENSOR

Computation of the imaginary part of the tensor in Eq.
s66d is demonstrated here only for the sum containing
M mn

* sr ,kdM mn
s1dsr ,kd terms. A straightforward calculation

leads to

ImFiko
n=1

`

o
m=−n

n
1

nsn + 1d
M mn

* sr 1,kdM mn
s1dsr 2,kdG

= ReHko
n=1

`
1

nsn + 1d
s¹1 3 ds¹2 3 d

3 o
m=−n

n

Yn
m*su1,w1dYn

msu2,w2df jnskr1dr 1gfhn
s1dskr2dr 2gJ ,

=ko
n=1

`

o
m=−n

n
1

nsn + 1d
M mn

* sr 1,kdM mnsr 2,kd. sD1d

Here the second expression results from Eqs.s35d and s67d.
The third expression is obtained by noting that according to
Eq. sA5d, the sum involving spherical harmonics is purely
real, and recalling that Refhn

s1dskrdg< jnskrd<Ref jnskrdg
whenk has a vanishingly small imaginary part.

The sums involving other terms are treated in full anal-
ogy. It is readily verified that the computation of the imagi-
nary part of Eq.s66d is formally the same as replacing the
functions M mn

s1dsr ,kd and M mn
s2dsr ,kd with M mnsr ,kd, and the

functionsNmn
s1dsr ,kd andNmn

s2dsr ,kd with Nmnsr ,kd.
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